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ABSTRACT: Plenty of climate data from various sources have become available in recent years. However, to obtain climate data 
adequately meeting the requirement of ecological studies remains a challenge in some cases due to the difficulty of data integration 
and the complexity of downscaling, especially for mountainous regions. Lapse rate is one of the most important factors that influence 
the change of climatic variables in the mountains, and it should be incorporated into climatic models. In this study, we applied a 
synthetic approach combining bilinear interpolation (to produce seamless surfaces) and dynamic local regression (to obtain local 
lapse rates) to develop a scale-free and topography-correspondent downscaling model in R environment for Taiwan, called 
clim.regression. This model can generate 73 climatic variable estimates specific to the user-defined points of interest, including 
primary climatic variables and additional biologically relevant derivatives for historical (1960‒2009) and future periods (2016‒
2035, 2046‒2065 and 2081‒2100). Results of our evaluation indicated that clim.regression reduced prediction error by 54.6%‒
66.7% relative to the original gridded climate data for temperatures. In addition, we demonstrated the spatiotemporal patterns of 
lapse rate for different climate variables. 
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INTRODUCTION  
 

Climate variables, particularly temperature and 
precipitation, are the most well-known key factors 
related to vegetation zonation. A high-quality and 
accessible climate dataset is essential for ecological 
studies and applications, especially in regions with 
diverse topography and high climatic heterogeneity. 
However, to obtain and to process substantial climate 
data were difficult for ecologists in the past, and 
scientists often use statistically interpolated climate data 
from a few existing stations as substitutes for the 
continuous climate surface (Su, 1984a; Tang and 
Ohsawa, 1997). 

Over the last decade, a large volume of climate data 
has become available through various sources; most of 
them were represented in grid format with the finest 
resolution of arc-seconds or kilometers in global or 
regional scale (Hannaway et al., 2005; Hijmans et al., 
2005; Harris et al., 2014). Although such gridded data 
are suitable for modeling general patterns and trends at 
global and regional scales, they are still too coarse to 
provide detailed climatic information in mountainous 
and topographically diverse areas to facilitate local 
ecological studies and resources management. To 
overcome this limitation, several downscaling methods 

have been developed to generate high-resolution spatial 
climate data, such as Ordinary Kriging (Chiu and Lin, 
2004), a combination of Kriging and polynomial linear 
regression (Chiou et al., 2004), a combination of bilinear 
interpolation and partial derivative functions for 
elevational adjustment (Wang et al., 2006; 2012), and an 
approach of dynamic local regression (Wang et al., 2016; 
2017). ClimateAP, a scale-free climate downscaling 
model based on dynamic local regression approach, was 
recently developed and covered Asia-Pacific (AP) 
region (Wang et al., 2017). The baseline data of this 
model used a 4-km gridded climate data from PRISM 
(Daly et al. 2002) for China and Mongolia, and 
WorldClim (Hijmans et al. 2005) for the rest of the Asia-
Pacific. The model reduces prediction error by up to 27% 
and 60% for monthly temperature and precipitation, 
respectively, relative to the original baseline data. 
However, the prediction accuracy for a specific region 
varies depending on the quality of the baseline data, 
which is affected by the density of weather stations used 
for developing the baseline data for the region. 
Unfortunately, historical climate data from weather 
stations in Taiwan were not included in the climate 
mapping project of PRISM (Hannaway et al., 2005). 
Thus, it could adversely impact the prediction accuracy 
of ClimateAP in Taiwan. 
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Taiwan is a subtropical island on the west edge of the 
Pacific Ocean with diverse and complicated topography. 
The climate of Taiwan is mainly affected by the 
northeast monsoon during winter and by the southwest 
monsoon and typhoons in the summer. The Central 
Range occupying more than 70% of the area of Taiwan, 
runs through the whole island from northeast to 
southwest with the highest peak of 3,952 meters a.s.l., 
and creates an obvious altitudinal temperature zonation 
(Su, 1984a), as well as the seasonal allocation of 
precipitation (Su, 1985). Many studies have revealed a 
strong relationship between the natural vegetation and 
the large-scale altitudinal climate zonation (Su, 1984b; 
Chiu, 2004; Chiou et al., 2010; Lin et al., 2012; Li et al., 
2013). Furthermore, the local climate is induced by the 
co-effects of monsoon and topography (Sun, 1993; Sun 
et al., 1998; Chao et al., 2007; Chao et al., 2010; Li et 
al., 2013). Ecologists have a strong demand on fine-scale 
climate data to depict the ecological and environmental 
correlations in detail. However, most studies can only 
utilize indirect variables such as elevation and 
topography as substitutes to climatic variables due to the 
lack of a high-quality and high-resolution spatial climate 
dataset for the island.  

Meteorologists in Taiwan have accomplished a 
framework called Taiwan Climate Change Projection 
and Information Platform (TCCIP) and generated a 
5km×5km gridded climate surface based on historical 
observations from thousands of weather stations and 
provided future projections based on different AR5 
General Circulation Models (GCMs) and scenarios (Hsu 
et al., 2011; Weng and Yang, 2012). TCCIP’s datasets 
are powerful supplements to the remote and observation-
sparse mountains, but its resolution is not fine enough to 
represent the diverse climate situation due to the steep 
topography within a 5km×5km grid. 

In this study, our main objectives were to: (1) 
establish a statistical downscaling model named as 
clim.regression in R environment to downscale the 
5km×5km gridded climate data of TCCIP to a scale-free 
format based on the algorithm of bilinear interpolation 
and dynamic local regression from ClimateNA (Wang et 
al., 2016) and ClimateAP (Wang et al., 2017); (2) 
generate additional biologically relevant derivatives for 
ecological studies; (3) analyze the spatiotemporal 
patterns of variation in lapse rate; and (4) evaluate the 
prediction accuracy of clim.regression in comparison to 
the original TCCIP data. 

 

MATERIALS AND METHODS 
 
Source of historical and future climate data 

The 5km×5km gridded surfaces of historical 
meteorological data used in this study were developed 
by TCCIP (Weng and Yang, 2012). The dataset covers 
the main island of Taiwan and spans the period from 

1960 to 2009. TCCIP incorporated historical records of 
air temperature from 1,152 weather stations and 
precipitation from 1,497 rainfall stations to construct the 
gridded dataset through a conventional spatial 
interpolation process. There are four sets of primary 
climate variables including monthly precipitation 
(precip01 to precip12), monthly minimum temperature 
(Tmin01 to Tmin12), monthly mean temperature 
(Tmean01 to Tmean12) and monthly maximum 
temperature (Tmax01 to Tmax12). The values of these 
variables were obtained and united with the coordinate 
(latitude, longitude and elevation) of the center of each 
grid. There were 48 primary monthly climate variables 
in total. TCCIP has also provided future climate 
projections in the same resolution of 5km×5km, which 
were downscaled from GCMs of CMIP5 and rectified by 
observations of Aphrodite (Asia Precipitation Highly-
Resolved Observational Data Integration Towards 
Evaluation of the Water Resources) and historical 
climate data of Taiwan (Lin et al. 2016). Projections of 
49 GCMs (Table 1) covering different RCPs (RCP 2.5, 
RCP 4.6, RCP 6.0 and RCP 8.5) and periods (2016‒2035, 
2046‒2065, 2081‒2100). 

 
The downscaling process of historical and future 
climate data 

To obtain smooth and continuous climate surface 
estimates, clim.regression utilized the combination of 
bilinear interpolation and dynamic local regression 
approach to downscale the original 5km×5km gridded 
climate dataset to scale-free point estimates, which is the 
same as in ClimateNA (Wang et al. 2016) and 
ClimateAP (Wang et al. 2017). The downscaling process 
included four steps for each of the 48 primary monthly 
climate variables as illustrated in Figure 1: 

 

(1). Extraction of a primary climate variable and 
elevation from the grid covering the point of 
interest and eight neighboring grids (Fig. 1A); 
(2). Calculation of the bilinear interpolated estimate 
of the primary monthly climate variable (𝑡௣

ᇱ ) and 
elevation (𝑍௣

ᇱ ) of the location of interest from the 
nearest four grids (Fig. 1B, Formula 1 & 2); 
(3). Calculation of the differences in the primary 
monthly climate variable (∆𝑡) and in elevation (∆𝑧) 
between each of the 36 unique pairs among the nine 
neighbor grids (Fig. 1C, Formula 3); 
(4). Construction of a simple linear regression 
based on the 36 pairs to represent the local 
relationship between ∆𝑡 and ∆𝑧 with the slope of 
the regression line, m, representing the local lapse 
rate of the cell where the interest point is located. 
Elevation adjustment was based on the lapse rate (m) 
and the difference between actual elevation (𝑍௣ ) 
and the bilinear interpolate (𝑍௣

ᇱ ) of the interest point 
(Fig. 1D, Formula 4). 
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Table 1. All the 49 GCMs and emission scenarios provided by TCCIP available for clim.regression. 
 

GCM RCP 2.6 RCP 4.5 RCP 6.0 RCP 8.5 GCM RCP 2.6 RCP 4.5 RCP 6.0 RCP 8.5 
10th-percentile V V V V GFDL-ESM2M  V V V 
25th-percentile V V V V GISS-E2-H V V V V 
75th-percentile V V V V GISS-E2-H-CC  V  V 
90th-percentile V V V V GISS-E2-R V V V V 
ACCESS1-0  V  V GISS-E2-R-CC  V  V 
ACCESS1-3  V  V HadGEM2-AO V V V V 
bcc-csm1-1 V V V V HadGEM2-CC  V  V 
bcc-csm1-1-m V V V V HadGEM2-ES V V V V 
BNU-ESM V V  V inmcm4  V  V 
CanESM2 V V  V IPSL-CM5A-LR V V V V 
CCSM4 V V V V IPSL-CM5A-MR V V V V 
CESM1-BGC  V  V IPSL-CM5B-LR  V  V 
CESM1-CAM5 V V V V maximum V V V V 
CESM1-CAM5-1-FV2  V  V media V V V V 
CMCC-CESM    V minimum V V V V 
CMCC-CM  V  V MIROC5 V V V V 
CMCC-CMS  V  V MIROC-ESM V V V V 
CNRM-CM5 V V  V MIROC-ESM-CHEM V V V V 
CSIRO-Mk3-6-0 V V V V MPI-ESM-LR V V  V 
EC-EARTH    V MPI-ESM-MR V V  V 
ensemble V V V V MRI-CGCM3 V V V V 
FGOALS-g2 V V  V MRI-ESM1    V 
FIO-ESM V V V V NorESM1-M V V V V 
GFDL-CM3 V V V V NorESM1-ME V V V V 
GFDL-ESM2G V V V V      

 

 
Fig. 1. Four steps of the downscaling process. (A) The grid tiles covering the point of interest p and its eight neighbors were 
extracted from the original climate dataset. (B) Bilinear interpolated estimates of temperature, precipitation and elevation of the 
point p were calculated by the weighting of distance to the center of the four nearest grid tiles. (C) A total of 36 unique pairs were 
subset to calculate the paired differences for temperature, precipitation (∆t) and elevation (∆z), respectively. (D) A simple linear 
regression of ∆tmn~ΔZmn was conducted to obtain the slope m, representing the local lapse rate of the nine grids surround point 
of interest for each of the climate variables. 
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Clim.regression generated 73 climate variable 
estimates (Table 2) for either a single point location or a 
continuous surface. These climate variables were either 
directly calculated from the four primary climate 
variables or derived as indicated in Table 2. 

The formula for the downscaling process included: 
 

 
 
Future climate projections of TCCIP were presented 

as anomalies relative to the baseline of 1986‒2005 at the 
same spatial resolution of historical climate data. The 
anomalies of 5km×5km gridded future climate 
projections were added to the baseline portion (1986‒
2005) to create a ‘gridded future climate data’ prior to 
the downscaling procedure. 

 
Table 2. Primary climate variables and the biologically relevant 
derivatives generated by clim.regression. 
 

(1) Primary climate variable estimates.  
(Category/Climate variables) 

Precipitation 
Monthly precipitation (precip01 to precip12) 
Seasonal precipitation  

(PPT_DJF, PPT_MAM, PPT_JJA, PPT_SON) 
Mean annual precipitation (MAP) 
Mean annual summer precipitation (MSP) 

Temperature 
Minimum 

Mean monthly minimum temperature  
(Tmin01 to Tmin12) 

Mean seasonal minimum temperature  
(Tmin_DJF, Tmin_MAM, Tmin_JJA, Tmin_SON) 

Average 
Mean monthly temperature (Tmean01 to Tmean12) 
Mean seasonal temperature 

(Tave_DJF, Tave_MAM, Tave_JJA, Tave_SON) 
Mean annual temperature (MAT) 

Maximum 
Mean monthly maximum temperature  

(Tmax01 to Tmax12) 
Mean seasonal maximum temperature 

(Tmax_DJF, Tmax_MAM, Tmax_JJA, Tmax_SON) 
(2) Derivative estimates. (Derivative variable/Definition) 

Temperature difference (TD): Tmean07 minus Tmean01 
Summer heat:moisture index (SHM): 

(Tmean07)/(MSP/1000) 
Annual heat:moisture index (AHM): (MAT+10)/(MAP/1000) 
Ratio of winter precipitation (WPR): PPT_DJF/MAP (Li et 

al., 2013) 
Warmth index (WI): Annual summation of mean monthly 

temperature higher than 5°C. (Su, 1984b) 
Precipitation deficiency (PD): Difference between annual 

potential evapotranspiration and MAP. (Su, 1985) 
Dry month (DM): The month with rainfall less than 2X mean 

monthly temperature. DM is a factor variable in 0/1. (Su, 
1985) 

Evaluations of climate variable estimates 
We collected historical records covering the period 

of 1961 to 2009 from 15 weather stations to evaluate the 
accuracies of clim.regression model. Ten of the 15 
stations are subordinate to the Central Weather Bureau 
(CWB), which is the main corporation agency of TCCIP. 
The remaining five stations belong to the Taiwan 
Forestry Research Institute (TFRI), which is 
independent of the samples of TCCIP network. The 
observations from the 15 weather stations were also used 
to evaluate the magnitude of improvement over the 
original TCCIP gridded surfaces. Four sets of climate 
variable estimates generated by clim.regression, 
including monthly precipitation, monthly minimum 
temperature, monthly mean temperature and monthly 
maximum temperature, were evaluated against 
observations from the 15 weather stations (Table 3, Fig. 
2). Prediction errors of clim.regression were assessed 
and compared using the following three statistical 
measures:  

Mean error (ME): 

 
, where n is the number of samples, fi is the predicted value of the i-th 

sample and yi its real value. 
 
Mean absolute error (MAE): 
 
 
 
Root mean squared error (RMSE): 

 
 

Table 3. Localities of 15 weather stations and the period of 
observed data that available for model evaluation. 
 

Subordination/ 
Station 

Longitude Latitude 
Altitude 

(m) 
Observation 
period 

Central Weather Bureau (CWB) Incorporated by TCCIP 
Kaohsiung 120.32 22.57 2 

1961‒2009 

Taitung 121.15 22.75 9 
Hualien 121.61 23.98 16 
Hengchun 120.75 22.00 22 
Keelung 121.74 25.13 27 
Taichung 120.68 24.15 84 
Anbu 121.53 25.18 826 
Sunmoon Lake 120.91 23.88 1018 
Alishan 120.81 23.51 2413 
Yushan 120.96 23.49 3845 

Taiwan Forestry Research Institute (TFRI) independent from 
TCCIP 
Taimali 120.98 22.60 120 1980‒2009 
Liukuei 120.63 23.00 230 1999‒2009 
Fushan 121.60 24.76 634 1992‒2003 
Lienhuachih 120.90 23.93 666 1999‒2009 
Piluhsi 121.31 24.23 2150 1991‒2009 

𝑡𝑝
′ =

𝑡1𝑑2𝑑4 + 𝑡2𝑑2𝑑3 + 𝑡3𝑑1𝑑3 + 𝑡4𝑑1𝑑4

𝑑2
(1) 

(2) 

(3) 

(4) 

𝑍𝑝
′ =

𝑍1𝑑2𝑑4 + 𝑍2𝑑2𝑑3 + 𝑍3𝑑1𝑑3 + 𝑍4𝑑1𝑑4

𝑑2

∆𝑡𝑚𝑛 ~Δ𝑍𝑚𝑛 ,    𝑚 = {1,2,3, … ,9}, 𝑛 = {1,2,3, … ,9},  𝑚 ≠ 𝑛 

𝑡𝑝 = 𝑡𝑝
′ + 𝑚ห𝑍𝑝 − 𝑍𝑝

′ ห
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Fig. 2. Long-term observation data from fifteen weather stations were incorporated to evaluate the downscaling model. Solid stars 
demonstrate stations subordinate to the Central Weather Bureau of Taiwan (CWB). Open stars represent stations belonging to the 
Taiwan Forestry Research Institute (TFRI), which were independent from TCCIP system. 
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Table 4. The R-square values of the local linear regressions for different monthly climate variables. 
 

Monthly variable 
R2 value / Month 

1 2 3 4 5 6 7 8 9 10 11 12 Average 
Tmean 0.82  0.82  0.81  0.84  0.86  0.87  0.88  0.88  0.88  0.87  0.86  0.84  0.85  
Tmin 0.79  0.80  0.81  0.83  0.85  0.85  0.85  0.85  0.86  0.84  0.83  0.80  0.83  
Tmax 0.79  0.79  0.78  0.81  0.84  0.85  0.85  0.86  0.85  0.82  0.81  0.79  0.82  
Precipitation 0.20  0.21  0.24  0.23  0.25  0.26  0.23  0.25  0.22  0.21  0.22  0.22  0.23  
 

RESULTS 
 
Scale-free climate surfaces from the downscaling model 
Clim.regression is a scale-free and topography-
correspondent downscaling model, which attributes to 
the continuous and smooth characteristics of bilinear 
interpolation and the elevational adjustment by lapse rate 
from a dynamic local regression. Regular grids for MAT 
(mean annual temperature) and MAP (mean annual 
precipitation) surfaces were generated by the model at 
the spatial resolution of the original baseline data 
(5km×5km) and a downscaled spatial resolution 
(250m×250m) (Fig. 3). The results showed that MAT in 
Taiwan ranges from 1 °C to 28 °C and exhibits a trend 
of decline from lowland to alpine and from south to north. 
A more detailed spatial distribution of temperature due 
to geographical effect, such as warm basin of Puli and 
cool tablelands of Linkou and Pagua, could also be 
revealed by the downscaled surface (Fig. 3A‒B). The 
spatial distribution of MAP demonstrated a different 
pattern from that of MAT; it exhibited two-ended humid 
regions in the northeast and the southwest of Taiwan. 
The northeastern mountains in Taipei and Ilan and the 
southwestern edge of the Central Mountain Range in 
Kaohsiung and Pingtung are the moistest regions of 
Taiwan, and the downscaled surface more clearly 
revealed some precipitation hotspots with annual rainfall 
up to 6,000 mm (Fig. 3C‒D). 

In comparison with the original climate dataset at the 
resolution of 5km×5km, the downscaled one offers a 
detail depiction on the climatic alternation with 
topographies as the examples showed in Fig. 3. The 
scale-free modeling approach not only has the advantage 
in providing continuous and seamless climatic surface 
for large-scale studies (e.g., the classification of 
ecological-climatic regions, climatic niche modeling, 
and projections, etc.), but also generates accurate and 
point-specific climatic estimates as environmental 
correlates for plot-based researches (e.g., vegetation 
survey and plotting, etc.). 

 
Lapse rate and effectiveness of the elevational 
adjustment 

The dynamic local linear regression among the nine 
neighboring cells explained, on average, 85.3% of the 
total variation in monthly mean temperature. The 
amount of variance explained for monthly minimum 
temperature (83.1%) and monthly maximum 
temperature (81.9%) were slightly lower (Table 4). The 

average temperature lapse rate in the mountain areas was 
-5.65 °C/km but displayed an obvious seasonal variation. 
Fig. 4A‒C illustrate the same pattern in three primary 
temperature variables with a higher variation of lapse 
rate in winter (from Nov. to Apr.) than in summer (from 
May to Sep.). The relationships revealed in the local 
regressions were weaker for precipitation than for 
temperatures. Only 20.3‒25.7% of precipitation’s 
variation can be explained by the local regressions (Fig. 
4D, Table 4). 

We compared the relationships between the changes 
in temperature and the elevation between two mountains, 
Alishan and Taipingshan. Such a relationship was 
stronger for Alishan with a steady lapse rate from -6.00 
to -6.44 °C/km from winter to summer. In contrast, a 
higher seasonal variation and a weaker relationship 
between temperature and elevation were observed in 
Taipingshan (Fig. 5). 

The spatial distributions of the estimated lapse rates 
varied among seasons and regions. In winter, lower lapse 
rates for monthly average temperature (from -2 to -5 
°C/km) were exhibited in the central and western parts 
of the Central Mountain Range, especially in the hills 
from Hsinchu, Miaoli, Nantou, Chiayi to Kaohsiung. In 
contrast, very steep lapse rates (from -6 to -9 °C/km) 
were demonstrated in the northeastern mountains and 
Hengchun peninsula (Fig. 6A). The spatial 
differentiation in lapse rate in most areas mitigated in 
summer, and demonstrated a mild geographical 
divergence with a range from -4 to -7 °C/km (Fig. 6C). 
In some regions, such as the northeastern mountains in 
Taipei and Ilan, Hengchun peninsula, Tawu Mountain 
and the Costal Mountain Range, the steep lapse rates (<-
6 °C/km) could be found across all seasons of the year. 
Our dynamic local regression approach revealed the 
variation in the lapse rate both spatially and temporally 
over the island, and thus produced accurate adjustment 
for elevation. 

 
Statistical evaluations of the downscaling model and its 
improvement over TCCIP dataset 

The prediction accuracy of clim.regression was 
evaluated by comparing to historical observations from 
the 15 weather stations (Table 5). Clim.regression 
demonstrated a high prediction accuracy for monthly 
mean temperature with a low prediction error (0.56 °C in 
MAE) and a high percent of variance explained (99.1%). 
The prediction accuracy and variance explanation were 
slightly lower for monthly minimum temperature and 
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Fig. 3. Spatial distributions of mean annual temperature (MAT) and mean annual precipitation (MAP) for original climate data at the 
resolution of 5 km and downscaled to the resolution of 250 m. (A) Original and (B) downscaled MAT; (C) Original (D) and downscaled 
MAP. Data period: 1986‒2005. 
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Table 5. Summaries of statistical evaluations of clim.regression against historical observed data from Central Weather Bureau 
(CWB) and Taiwan Forestry Research Institute (TFRI). 
 

Subordination Climate variable 
Clim.regression  TCCIP 

MAE RMSE Variance explained (%)  MAE RMSE Variance explained (%) 

CWB 
(10 stations) 

Tmean (℃) 0.56 0.73 99.10  1.73 3.40 87.83 
Tmin (℃) 0.79 0.98 98.72  1.92 3.51 87.04 
Tmax (℃) 0.71 1.00 98.22  1.67 3.25 88.29 
Precipitation (mm) 34.65 64.63 94.39  31.10 67.08 93.75 

TFRI 
(5 stations) 

Tmean (℃) 0.58 0.74 98.56  1.34 1.56 96.75 
Tmin (℃) 0.82 1.17 97.27  1.24 1.49 96.51 
Tmax (℃) 1.52 1.85 95.61  2.53 2.78 92.27 
Precipitation (mm) 49.56 105.39 79.77  46.39 106.14 79.62 

Average 
(15 stations) 

Tmean (℃) 0.56 0.73 99.06  1.68 3.25 86.71 
Tmin (℃) 0.79 1.00 98.52  1.85 3.35 86.61 
Tmax (℃) 0.80 1.13 97.61  1.76 3.21 84.76 
Precipitation (mm) 36.26 70.16 93.00  32.74 72.30 92.43 

 

 
Fig. 4. Proportions of variance explained by local linear regressions in total variation among the nine neighboring cells for the four primary 
climate variables: (A) monthly mean temperature (Tmean), (B) monthly minimum temperature (Tmin), (C) monthly maximum temperature 
(Tmax) and (D) monthly precipitation, by month. The black horizontal solid lines inside the boxes indicate the medium. For temperature 
variables, a similar trend of higher variation in winter and lower variation in summer can be observed. Data period: 1961‒2009. 
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Fig. 5. Comparisons in lapse rates for winter and summer between two mountains, Alishan (A, B) and Taipingshan (C, D). Alishan (120.81E, 
23.51N) is a mountain located in the south-west Taiwan, while Taipingshan (121.53E, 24.49N) is located in the north-east part. The two 
mountains have a similar elevation around 2000 m. Data period: 1961‒2009. 

 
monthly maximum temperature in terms of the prediction 
error (0.79 °C and 0.80 °C) and the percent of variance 
explained (98.5% and 97.6%, respectively). However, the 
prediction accuracy was considerably lower for 
precipitation. The precipitation estimates explained 
93.0% of the total variance of observations with a 
prediction error of 36.26 mm in MAE. 

Monthly mean temperature was the most predictable 
climate variable. The prediction accuracy of monthly 
mean temperature in regions lower than 2,500 m a.s.l. 
could reach the level of 0.3‒0.6 °C in MAE. However, 
we found that the prediction error increased with 
elevation (r2=0.55, p=0.0015). For example, in the 
subalpine area of Taiwan, clim.regression had a 
comparatively weak predict ability with the MAE of 
1.02 °C. Interestingly, such a relationship was not 

observed for monthly minimum temperature and 
monthly maximum temperature (r2=0.07 and 0.35, 
p=0.3252 and 0.0209). The prediction accuracy for 
precipitation was lower and accompanied with a higher 
variation and a less amount of variance explained 
(92.1%). In addition, there was no obvious trend found 
between prediction error in precipitation and altitude 
(r2=0.01, p=0.7612). It suggests that the pattern of 
precipitation could be dominantly influenced by regional 
terrains rather than a local elevational gradient within the 
5km×5km grids. 

In comparisons to  TCCIP original dataset, 
clim.regression reduced prediction errors by 1.12°C 
(66.7%), 1.06°C (52.3%) and 0.96 °C (54.6%) for 
Tmean, Tmin and Tmax, respectively (Fig. 7A‒C, Table 
5). These results demonstrated that clim.regression 
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Fig. 6. Spatial distributions of estimated lapse rate for monthly mean temperature in the mountain areas (regions higher than 100 m 
a.s.l.) in Taiwan: (A) January, (B) April, (C) July and (D) October. Data period: 1961‒2009; resolution: 250 m. 
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Fig. 7. Comparison in prediction error between baseline data (directly from TCCIP) and Clim.regression output of 15 weather stations 
for: (A) monthly mean temperature (Tmean), (B) monthly minimum temperature (Tmin), (C) monthly maximum temperature (Tmax) 
and (D) monthly precipitation. 

 
effectively improved the accuracy and refined the spatial 
resolution of temperature estimates relative to the 
original dataset from TCCIP, especially with advantages 
in temperature projection for mountains with diverse 
topography. However, the improvement in precipitation 
is limited (Fig. 7D). Both TCCIP baseline and 
clim.regression had a higher prediction error for 
precipitation during summer months (May to Oct.). As 
illustrated in Fig. 8, the magnitude of the improvement 
was more substantial at higher elevations (the lower end 
of the temperatures), especially in the alpine area of 
Yushan (3,952m) and Alishan (2,413m). The 
downscaled temperatures followed a 1:1 relationship 
with observations much closer than the TCCIP 
predictions.  

Downscaling for future climate projections 
Based on the estimated lapse rate of future scenarios, 

clim.regression was also effective to downscale the 
‘gridded future climate data’ to a scale-free and 
continuous surface with the same 73 climate variables as 
for the historical period. Downscaled MAT by 
clim.regression for the reference period and future 
scenario in the mountainous area of Taiwan were 
illustrated in Fig.9. The benefit of the downscaled MAT 
is clearly shown in this example in term of fine spatial 
resolution and high topographical correspondence. 
Based on the comparison among current and future 
climate under the RCP 4.5 scenario, not only an evident 
warming can be found in the valleys and plains but also 
demonstrate an obvious retreat of isothermals to the 
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Fig. 8. An illustration to demonstrate the difference between observations from 15 weather stations and its corresponding climatic 
estimates from TCCIP outputs (red) and clim.regression in May for (A) monthly mean temperature (Tmean05), (B) monthly minimum 
temperature (Tmin05), (C) monthly maximum temperature (Tmax05) and (D) monthly precipitation (Precipitation05). It was clearly 
revealed that TCCIP outputs are biased as the decreasing of observed temperature, which is highly correspond to the raise of altitude. 

 
subalpine area (Fig.9). Clim.regression has a solid 
advantage in generating current and future climate data 
with the same and desirable spatial resolution, which is 
a convenient for modeling biological response to climate 
change and for advanced comparative studies. 

 
DISCUSSION 
 
Spatio-temporal heterogeneity of temperature lapse 
rate in Taiwan 

Temperature lapse rate, the rate of change in 
temperature with elevation in the troposphere, is widely 
used as the most important predictor in mountain climate 

(Su, 1984a; Tang, 2006; Chiu et al., 2014). Many authors 
have revealed the spatio-temporal variation of lapse rate 
caused by atmospheric processes, interaction of 
prevailing monsoon, geographical and topographical 
positions, etc. (Su, 1984a; Tang and Ohsawa, 1997; 
Pepin, 2001; Chiu et al., 2014), thus suggested using 
regional observed data to derive the lapse rate as a local 
climate predictor rather than the commonly used global 
constant (-6.5 °C/km in Barry and Chorely, 2009; or -
6.0 °C/km in Willmott and Matsuura, 2009). In Taiwan, 
a high spatio-temporal variation of lapse rate has been 
reported. Su (1984a) mentioned that temperature in the 
mountain area is highly correlated to elevations, and 
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Fig. 9. Illustration of the effectiveness of downscaled climatic surface in the mountainous area of Taiwan, stretching from the coast of 
the Pacific Ocean up to the highest peak, Yushan, at 3,952 m a.s.l. (A) Downscaled mean annual temperature (MAT) by clim.regression 
in the resolution of 250 m for the reference period of 1986‒2005; (B) downscaled future MAT for the period of 2090‒2100 based on 
the GCM of CSIRO-Mk3-6-0 in RCP 4.5 scenario. 

 
represented a lapse rate ranges from -3.08 to -6.98 °C/km 
but varies among regions and seasons. Guan et al. (2009) 
has modeled a steeper temperature lapse rate from April 
to December with a range between -4.93 and -5.62 
°C/km, and a shallower rate from -3.22 to -3.61 °C/km 
during January to March according to historical 
observation data from 43 meteorological stations, mostly 
located in the west of the Central Mountain Range and 

Snow Mountain. A full exploration of the spatio-
temporal variation of lapse rate was accomplished by 
Chiu et al. (2014). Based on historical records from 219 
weather stations, Chiu et al. (2014) depicted that the 
average temperature lapse rate for all of Taiwan is -5.17 
°C/km with a general tendency to be steeper in summer 
and shallower in winter. They also found that the lapse 
rate exhibits a pronounced contrast between the 
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windward side (steeper, -5.97 °C/km) and the leeward 
side of the Central Mountain Range (shallower, -4.51 
°C/km) due to the atmospheric effect of prevailing 
winter monsoon. However, to obtain a lapse rate for 
specific locations remained a challenge. 

Through the approach of dynamic local regression, 
we have delineated a fine scale of lapse rate and used it 
as the key adjustment for the downscaling procedure. 
The distribution maps of lapse rate for the monthly 
temperature (Fig. 6) have shown a similar spatio-
temporal pattern to that of Chiu et al. (2014), which 
exhibited a steeper lapse rate in regions exposed to the 
northeast monsoon (e.g., The northeast mountains, the 
Coastal Mountain Range from Hualien to Taitung, and 
Hengchun peninsula) and shallower in the leeward side 
(e.g., The west of the Central Mountain Range) during 
winter, and became obscure in summer. In the context of 
high spatio-temporal variation of lapse rate in Taiwan, 
clim.regression shows an excellent performance by 
using the local lapse rate to facilitate a high-resolution 
downscaling. Our evaluations have proved that this 
model considerably improves prediction accuracy 
relative to the original TCCIP climate data and it is 
suitable for the steep and mountainous areas and 
provides accurate and topography-corresponded climate 
variable estimates. 

In addition, Lenoir et al. (2008) have pointed out that 
temperature lapse rate is the most important predictor of 
temperature variability in mountains, and can be one of 
the key contributions to predict the response of plants to 
climate change. In this study, steep lapse rates (<-6 
°C/km) are found all year round in several areas, such as 
the northeast mountains, Hengchun peninsula, Tawu 
Mountain and Coastal Mountain Range. Some studies 
have reported the compression of vegetation zones in 
these areas due to a dramatic change in temperature 
along the altitudinal gradient (Su 1984a; Su, 1984b; 
Chiou et al., 2010). In consequence of the feature of local 
regression, clim.regression can provide a deep insight 
into the entire spatial and temporal distribution of lapse 
rate in Taiwan, and our results show a great promise for 
providing high quality scale-free climate variables for a 
wide spectrum of research and application activities in 
biology, ecology, and adaptation to climate change. 

 
Benefits of the dynamic local downscaling model 

Dynamic local regression is a simple but effective 
method to achieve a scale-free downscaling. This 
method has been utilized to develop ClimateNA for 
North America (Wang et al., 2016) and ClimateAP for 
Asia-Pacific region (Wang et al., 2017) to downscale 
WorldClim and PRISM gridded datasets to scale-free 
climate estimates. The model evaluation demonstrated 
that the prediction error of ClimateNA and ClimateAP 
are 0.77 °C and 1 °C (in MAE). Clim.regression is a R 
script based on the same algorithm of ClimateNA and 

ClimateAP but use TCCIP 5km×5km gridded climate 
surface, an interpolation based on historical data from 
thousands of weather stations of Taiwan, as the data 
source. Our statistical evaluations revealed that the 
prediction error of clim.regression is 0.56 °C in monthly 
mean temperature and 36.26 mm in monthly 
precipitation, which are substantially smaller than that 
for the original TCCIP data (in MAE, Table 5). These 
results suggest that the dynamic local regression 
approach is effective in downscaling climate variables to 
meet the requirement for ecological studies in mountain 
areas in Taiwan. 

Chiu and Lin (2004) utilized regression and Ordinary 
Kriging to develop a scale-free model based on 219 
meteorological stations and 877 rainfall stations to 
interpolate the distribution of monthly temperature and 
monthly precipitation. A cross validation revealed that 
the prediction errors of monthly temperature ranged 
from 1.57‒1.74 °C and monthly precipitation ranged 
from 17.51‒53.07 mm (in RMSE). In addition, some 
authors applied polynomial regression to model the 
distribution of monthly temperature based on historical 
observations from 156 weather stations, but exhibited a 
lower prediction accuracy ranging from -5.15 °C to 4.68 
°C (in ME) due to the inflexibility of universal 
regression coefficient (Chiou et al., 2004). In contrast, 
clim.regression provides more accurate temperature 
estimates (0.73‒1.13 °C in RMSE) than using Kriging 
and polynomial regression, due to its flexibility of local 
lapse rate and the effectiveness of elevational adjustment. 
However the rainfall prediction error of our model is 
70.16 mm in RMSE, it does not meet the level shown in 
Chiu and Lin (2004).  

We found that clim.regression is not effective in 
downscaling precipitation (Fig. 7D). In Taiwan, the co-
effect of humid monsoons and strong typhoons with 
diverse topography creates dramatic changes of 
precipitation in the mountains. For a windward slope at 
the middle elevation, the monthly precipitation during 
wet seasons can reach 2,000 mm/month but decrease to 
less than 800 mm/month as the change of aspect in a 
short distance of kilometers at the same elevation. 
Bilinear interpolation with a sampling window of 2 by 2 
cells (10km×10km) and the dynamic local regression 
within a sampling unit of 3 by 3 cells (15km×15km) are 
the kernel of clim.regression to produce climatic 
estimates for the point of interest, however, the severe 
change of precipitation in mountains may neither 
linearly correlate with the change of elevation nor 
correspondently fit with the coverage of sampling 
windows to lead to a poor performance in precipitation 
prediction than temperature. It is worthy of advanced 
researches to explore the spatial pattern and its statistical 
correlates of precipitation to achieve an accurate predict 
model in the future. 

The results of validation by weather stations of CWB 
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and TFRI demonstrated that the estimates of 
clim.regression were more approximate to observations 
from CWB rather than TFRI. It could be partly attributed 
to the reason that most historical observation data of 
CWB stations were the main component of TCCIP 
system, so that it might not be an independent validation 
and could lead to an over estimation of both TCCIP and 
clim.regression model performances, but it would not 
affect the evaluation of the improvement in prediction 
accuracy relative to TCCIP. Historical observation data 
from TFRI was not included by TCCIP, so that an 
independent validation could be achieved theoretically. 
However, due to the lack of sustainable maintenance and 
long-term financial support, data quality of these 
independent weather stations could be harsher than 
CWB. It could be another effect leading to an under 
estimation of the downscaling model. 

 
CONCLUSION 
 

Ecologists have accumulated a large amount of field 
investigation data in Taiwan. Many studies exploring 
vegetation-climate relationship have also been published. 
However, due to the difficulty in accessing climate data in 
the past, researchers usually used geographical variables, 
such as elevation, longitude, latitude, aspect, the distance 
to seashore and exposure to prevailing monsoon as 
substitutions for climate variables in data analysis. Results 
of these studies based on indirect variables could lead to a 
biased result of ecological-climate relationships. The 
scale-free climate variables generated by clim.regression 
offer a solution to this problem. Users cannot only 
generate a continuous and seamless surface for climate 
niche modeling but is also possible to estimate historical 
and future climate condition for specific locations such as 
numerous vegetation survey plots. It provides a large 
number of climate variables for scientists to explore, 
delineate and quantify the relationships between climate 
and vegetation. 

However, some limitations still exist in our 
downscaling approach. Clim.regression downscales 
gridded source climate variables through a combination 
of bilinear interpolation and concise elevational 
adjustment. Therefore, the performance of 
clim.regression is mostly determined by two factors in 
addition to the effectiveness of the downscaling 
algorithm: the quality of the original climate dataset and 
the accuracy of the imported digital elevation surface. 
The quality of baseline data strongly depends on the 
number of historical observations and the number of 
weather stations being incorporated. Therefore, we 
regard both of the robust meteorological observation 
network and the effective interpolation approaches are 
the critical issues to provide a high-quality gridded 
dataset for downscaling. TCCIP has an ongoing project 
to improve the accuracy and the coverage of periods for 

gridded climate data of Taiwan, which serves as an ideal 
baseline data to be used in clim.regression to generate 
high-resolution and high-quality climate data for 
ecological studies for ecosystem adaptation to climate 
change. 
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