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Abstract While low-to-moderate resolution gridded
climate data are suitable for climate-impact modeling at
global and ecosystems levels, spatial analyses conducted at
local scales require climate data with increased spatial
accuracy. This is particularly true for research focused on
the evaluation of adaptive forest management strategies. In
this study, we developed an application, ClimateAP, to
generate scale-free (i.e., specific to point locations) climate
data for historical (1901–2015) and future (2011–2100)
years and periods. ClimateAP uses the best available
interpolated climate data for the reference period 1961–
1990 as baseline data. It downscales the baseline data from
a moderate spatial resolution to scale-free point data
through dynamic local elevation adjustments. It also
integrates and downscales the historical and future climate
data using a delta approach. In the case of future climate
data, two greenhouse gas representative concentration
pathways (RCP 4.5 and 8.5) and 15 general circulation
models are included to allow for the assessment of
alternative climate scenarios. In addition, ClimateAP
generates a large number of biologically relevant climate
variables derived from primary monthly variables. The
effectiveness of the local downscaling was determined
based on the strength of the local linear regression for the
estimate of lapse rate. The accuracy of the ClimateAP
output was evaluated through comparisons of ClimateAP
output against observations from 1805 weather stations in
the Asia Pacific region. The local linear regression
explained 70%–80% and 0%–50% of the total variation
in monthly temperatures and precipitation, respectively, in
most cases. ClimateAP reduced prediction error by up to
27% and 60% for monthly temperature and precipitation,
respectively, relative to the original baselines data. The
improvements for baseline portions of historical and future

were more substantial. Applications and limitations of the
software are discussed.

Keywords biologically relevant climate variables, down-
scaling, dynamic local regression, future climate, historical
climate

1 Introduction

High-quality climate data are essential for conducting
climate change impact analyses. Accordingly, a large
volume of climate data has become available through
various sources[1–4] in recent years. However, these data
sets are mostly in grid format with low-to-moderate spatial
resolutions. While such data are suitable for climate impact
modeling and analyses conducted at global and ecosystems
scales, modeling studies are increasingly shifting toward
local scales often with the goal of developing practical and
effective adaptive management strategies. Considering the
high levels of heterogeneity in climate in mountainous
areas, such gridded climate data are often not adequate to
meet the requirements for such studies. Thus, the demand
for high-resolution and high-quality spatial climate data are
rapidly increasing[5].
Historical climate data, often from a specific reference

period (e.g., 1961–1990), are widely utilized to support a
wide range of research focused on understanding the
relationships between climate variables and plant health
and productivity. They are also essential for building
climate niche models for examining the distribution of
specific ecosystems and their components[6,7] and for
testing mechanistic models designed to predict plant
growth response to climate[8,9]. Further, the veracity of
analyses of plant-climate relationships is dependent on the
degree to which the climate conditions reflected in
historical data match the actual climate conditions where
the plants or ecosystems reside[10,11]. For example, when
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conducting research with a climate component, it is
desirable that climate data are derived from a nearby
weather station(s) as such data would be the most accurate
and reliable. However, as the number of weather stations is
limited, the locations for research projects are often far
away and have considerably different climate conditions
from weather stations[2,12]. Spatial interpolation techniques
are often used to predict climate conditions for these
locations or for developing spatial climate data sets to
cover large areas. Statistical methodologies applied to
interpolate climate data, including kriging, bilinear and
spline interpolations, are primarily based on distances from
nearby weather stations. Yet, considering the degree to
which topography variations and other factors can
influence local climates over relatively short distances,
the accuracy of interpolated climate data obtained through
these methods is often not adequate.
A number of algorithms and software packages have

been developed to facilitate the spatial interpolation of
climate data. The ANUSPLIN software developed at the
Australian National University employs thin plate smooth-
ing splines to improve on distance-based interpolation, and
has been widely used. For example, WorldClim hosts
gridded climate data for the entire globe using this
approach[2]. The algorithm used in ANUSPLIN is a purely
statistical approach and its accuracy often limited for the
areas with sharp changes in elevation[1]. Another widely
used interpolation method is the Parameter-elevation
Regressions on Independent Slopes Model (PRISM)[13]

developed at the Oregon State University. PRSIM uses a
combination of statistical techniques and knowledge-based
methods to make adjustments to account for the effect of
factors including rain shadows, coastal proximity, and
temperature inversions on climate interpolations. PRISM
climate data are generally regarded as the highest quality
spatial climate data sets currently available. Interpolated
climate data are available for the United States and some
other regions, including China, at moderate resolutions.
Spatialized historical climate data sets are essential for

supporting research geared toward understanding the
response of plants, communities and ecosystems to past
and ongoing climate change. The most widely used
historical climate data are from the Climate Research
Unit in the UK, which provides global time series for
monthly climate data at the spatial resolution of 30 arcmin
(about 50 km � 50 km) available from 1901 to 2015[3].
Although the availability of climate data has improved

considerably during the last decade, some challenges
remain for non-meteorological users. For example, the
process required to obtain climate data for locations of
interest can be onerous. Specific software and knowledge
of geographic information systems are typically required to
process the data. This is particularly true when climate data
for historical and future periods are derived from different
sources and with different formats, variables and resolu-
tions. In addition, climate data generated by meteorologists

often lack climate variables that are relevant for biological
applications.
Several climate databases and tools have been devel-

oped to address these needs including those created by
McKenney et al.[7] and Rehfeldt et al.[14] using ANUS-
PLIN for North America. With these tools, users must
submit coordinates files for specific locations to request
climate data. The web-based Climate Wizard Tool[15]

covers the entire world and allows users to obtain climate
data for a location. However, there is no downscaling
involved and it can be time consuming to assemble climate
data for multiple locations. ClimateBC represents another
tool that has been widely used for its effectiveness in
downscaling, inclusion of both historical and future data,
and its user-friendly interface[16]. ClimateBC was initially
developed for western Canada and was subsequently
expanded to cover the western North America (Clima-
teWNA)[17] and finally encompassed the whole of North
America (ClimateNA)[18]. Along with expansion in cover-
age, its functionality has also been enhanced, particularly
by shifting the downscaling algorithm from a partial-
derivative-function based approach[16] to a dynamic-local-
regression approach[18].
Using the dynamic-local-regression approach designed

for ClimateNA, we developed a climate model to represent
the eastern Asia Pacific region called ClimateAP. While the
fundamental approach is similar to that employed in
ClimateNA, ClimateAP differs considerably in terms of
the baseline data, the fact that it covers distinct terrains and
topography, and the fact that it crosses an equatorial region.
Considering these differences, the effectiveness of the
downscaling algorithms and the accuracy of the output of
ClimateAP need to be evaluated to provide confidence for
its use in supporting climate change research in the Asia
Pacific region. Accordingly, the primary objective of the
work presented here is to describe the key algorithms
employed in the model and to evaluate the accuracy of its
output through comparisons against historical climate data.
The evaluation includes detailed assessments of derived
biologically relevant climate variables, the performance of
regionally specific functions, and the efficacy of methods
to incorporate daily weather station data in estimating these
climate variables.

2 Data and methods

2.1 Baseline data

Baseline gridded climate data for the reference period
1961–1990 are required to drive the ClimateAP. PRISM
data represent the highest quality data but were only
available for China and Mongolia. Consequently, it was
necessary to use monthly climate data from WorldClim[2]

for other countries within the AP region (Fig. 1). Since the
WorldClim data set had a complete coverage for the region,
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it was used as the base data set, with the PRISM data
substituted for China and Mongolia. To avoid steps at the
contact points between the data sets, inverse-distance-
weighted averages were applied to a 20 km overlapping
zone of the two data sets. The baseline climate data were
provided at the resolution of 0.25 � 0.25 arcmin (about
4 km � 4 km). The climate variables obtained from these
data sources included three primary climate variables:
monthly minimum temperatures (Tmin01–Tmin12),
monthly maximum temperatures (Tmax01–Tmax12) and
monthly precipitation (Pre01–Pre12). The mean elevation
of each grid cell was also included.

2.2 Historical climate data

Monthly temperature and precipitation data for 1901–2015
(version CRU TS 3.24) generated by the Climatic
Research Unit (CRU) at the University of East Anglia[3,19]

were used to represent the historical climate data.
According to Mitchell and Jones[19], the original data

were developed based on anomalies relative to the
reference period 1961–1990, although absolute values
were delivered for each individual year at the resolution of
0.5° � 0.5°. To facilitate the delta downscaling approach
(described below) in ClimateAP, the data were converted
back to anomalies for each year by subtracting 1961–1990
normals.

2.3 Future climate data

The climate data for future periods and years were derived
from a variety of general circulation models (GCM)
included in the CMIP5 project in the IPCC Fifth
Assessment Report[20] and downloaded from http://cmip-
pcmdi.llnl.gov/cmip5. GCM data are available at various
spatial resolutions, ranging from 0.75° � 0.75° to 2.85° �
2.85°. The GCM data were converted to a resolution of 1°
� 1° using bilinear interpolation to simplify the process of
integration into ClimateAP. Monthly climate data from two
emission scenarios (RCP 4.5 and 8.5) and 15 GCMs [21]

Fig. 1 The distribution of the baseline climate data (from PRISM and WorldClim) and weather stations that were used to derive
biologically relevant climate variables and to evaluate the output of ClimateAP.
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were included in ClimateAP for three normal periods
2011–2040, 2041–2070 and 2071–2100. An ensemble
data set based on all the 15 GCMs was generated for each
of the two RCPs and the three periods. In addition, future
monthly data were included for individual years 2011–
2100 from three GCMs for the two RCPs. As for the
historical data, future monthly values were converted into
anomalies relative to the 1961–1990 normals for the
purpose of downscaling using the delta approach described
below.

2.4 Downscaling of the baseline climate data

The downscaling algorithm in ClimateAP was adopted
from ClimateNA[18]. It uses a combination of bilinear
interpolation and local regression approaches to downscale
the baseline monthly grid data (4 km � 4 km) to scale-free
point data. The bilinear interpolation functions to inter-
polate values for locations between midpoints of the four
neighbor grids, while the local linear regression is used to
estimate lapse rates for the location of interest to account
for elevation effects. In the case of the local regression,
ClimateAP retrieves monthly climate data and elevation
values from nine closest neighbors of the location of
interest and calculates differences in climate variables and
elevation between all 36 possible unique pairs of the nine
data points. A simple linear regression of the differences in
a climate variable on the difference in elevation is
performed and the slope of the regression is used as the
lapse rate for the climate variable at that specific location.
A lapse rate is estimated for each of the 36 monthly
primary climate variables at each location of enquiry.
Given that the local linear regressions are dynamically
performed for every location of interest, the process is
called dynamic local regression or dynamic local down-
scaling. To avoid over-adjustment due to a weak local
regression, the adjusted amount is weighted by the R2 value
of the regression.

2.5 Integration and downscaling of historical and future
climate data

Both historical and future monthly climate data were
integrated and downscaled using a delta method following
Wang et al.[18]. With this approach, the historical data (and
future projections) are split into two sections: one section
for the reference period (i.e., 1961–1990 normal period)
and another section for the anomaly period (e.g., the period
between the reference period and 2015). For the anomaly
section, historical and future monthly climate anomaly
grids are interpolated to continuous surfaces using bilinear
interpolation at runtime. For the reference-period section,
the scale-free baseline monthly climate normal data
generated by ClimateAP are used to replace the original
historical and future climate data. After adding the
interpolated anomaly section to the scale-free reference

section, ClimateAP produces scale-free climate data for
historical and future years or periods. Since the baseline
data downscaled by ClimateAP are at much higher
accuracy than that of the historical and future projections,
this process is designed to improve the prediction
accuracies for both historical and future climate data over
their original values.

2.6 Calculated and derived climate variables

The baseline data contain 36 primary monthly climate
variables including monthly maximum (Tmax01–Tmax12)
and minimum (Tmin01–Tmin12) temperatures and pre-
cipitation (PPT01–PPT12). ClimateAP generates many
additional biologically relevant climate variables based on
these primary climate variables (Table 1). Some of these
variables, such as mean annual temperature (MAT) and
mean annual precipitation, can be directly calculated using
the primary monthly climate variables. Others, such as
degree-days (DD) above 5°C (DD> 5) and number of
frost-free days, require daily climate data. Since daily data
are not available in ClimateAP, daily climate data from
weather stations in the region were used to calculate these
climate variables and then related back to monthly climate
data. The functions reflecting such relationships were used
in ClimateAP to estimate those climate variables. Speci-
fically, these relationships were modeled using daily
climate data from 1805 weather stations located through-
out the Asia Pacific region from the Daily Global
Historical Climatology Network. The distribution of the
weather stations is shown in Fig. 1.
Due to the wide range of variation in climate variables in

the Asia Pacific region, no single linear, polynomial or
nonlinear function could adequately reflect the relation-
ships between DD and monthly climate variables. Thus,
piecewise functions constructed using combinations of
linear and nonlinear functions were applied to model these
relationships[18]. The DD variables included DD< 0,> 5,
< 18 and> 18. The general form of the DD piecewise
functions (DDm) is:

DDm ¼
if   Tm > k, 

a

1þ e
–

Tm – T0
b

� �

if   Tm£k,  cþ βTm

8>>><
>>>:

9>>>=
>>>;

(1)

where Tm is the monthly mean temperature for the m
month; and k, a, b, T0, c and β are the six parameters to be
optimized. The annual values of the DD variables were
calculated by summing up the monthly values. The same
approach was applied to other derived monthly climate
variables described below.
For the number of frost-free days (NFFD) and

precipitation as snow (PAS), a sigmoid function was used
to model the relationship between these monthly variables
and monthly temperatures:
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NFFDm or  PASð Þ ¼ a

1þ e –
Tm – T0

b

� � (2)

where Tm is the monthly minimum temperature for the m
month; and a, b and T0 are the three parameters to be
optimized.
For extreme minimum (EMT) and maximum (EXT)

temperature over a 30-year period, polynomial functions
were used as follows:

EMT ¼ aþ bTmin01þ cTmin012 þ dTmin122 þ eTD2

(3)

EXT ¼ aþ bTmax07þ cTmax072 þ dTmax08

þ eTmax082 þ fTD (4)

where a, b, c, d, e and f are the parameters to be optimized;
Tmin01 and Tmin12 are monthly minimum temperature
for January and December; Tmax07 and Tmax08 are
monthly maximum temperature for July and August,
respectively; and TD is continentality.
The other two derived climate variables, Hargreaves

reference evaporation and a climatic moisture deficit were
directly adopted from Wang et al.[18] due to a lack of
observations to evaluate these variables and the fact that
the methods used to estimate them are rather generic[22].

2.7 Statistical evaluations of ClimateAP outputs

The accuracies of the climate variables generated by

ClimateAP were evaluated against observations from
weather stations. Observed monthly normals of the
primary climate variables for the reference period 1961–
1990 were calculated based on the daily climate data from
the 1805 weather stations across the entire study area
shown in Fig. 1. The amount of variance explained by the
ClimateAP outputs and prediction errors, defined as the
mean absolute error, were used to evaluate the accuracy of
the climate variables generated by ClimateAP for the
baseline data.
For the evaluations of the historical data downscaled

with the delta approach, we compared the predicted values
using CRU, GCMs and ClimateAP against observations
for the three primary monthly variables for the baseline
normal period 1961–1990. As in the delta approach, the
baseline part of the historical and future climate data was
replaced by the scale-free baseline data generated by
ClimateAP. The amount of improvement in the scale-free
baseline data relative to the baseline part of the historical
and future climate data provides a conservative evaluation
of the predictions of historical and future climate data.

3 Results

3.1 Effectiveness of the local downscaling

The dynamic local linear regressions explained 70%–80%
of the total variation in monthly maximum and minimum
temperatures, and 0%–50% in monthly precipitation

Table 1 Climate variables directly calculated (Calculated) using the primary climate variables included in the baseline data and functionally derived

(Derived) based on the relationships between the climate variables calculated using daily climate data and monthly climate variables from the 1805

weather stations shown in Fig. 1

Category Variable short name Variable long name Availability at monthly and seasonal levels

Calculated MAT Mean annual temperature Yes

MWMT Mean warmest month temperature Yes

MCMT Mean coldest month temperature Yes

TD Continentally, temperature difference between MWMT and MCMT No

MAP Mean annual precipitation Yes

AHM Annual heat-moisture index (MAT+ 10)/(MAP/1000)) No

Derived DD< 0 (°C) Degree-days below 0°C Yes

DD> 5 (°C) Degree-days above 5°C Yes

DD< 18 (°C) Degree-days below 18°C Yes

DD> 18 (°C) Degree-days above 18°C Yes

NFFD (day) Number of frost-free days Yes

EMT (°C) Extreme minimum temperature over a 30-year period Yes

EXT (°C) Extreme maximum temperature over a 30-year period Yes

PAS (mm) Precipitation as snow Yes

Eref Hargreaves reference evaporation Yes

CMD Climatic moisture deficit Yes
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variables among the nine neighboring pixels in most cases
(i.e., medians) (Fig. 2). These results suggest the local
downscaling algorithm is effective for temperature and
moderate for precipitation variables. An assessment of
seasonal results shows that the downscaling was more
effective for warmer months than for cooler months.
Spatially, the downscaling was more effective in mountai-
nous areas (R2> 0.85 in most cases), where elevation
adjustment is critical, than in flat areas. The seasonal and
spatial patterns were similar for areas both north and south
of the equator (Fig. 2).
The local regression showed a negative linear relation-

ship between the changes in elevation and the changes in
monthly minimum and maximum temperatures in most
cases. However, positive relationships were also found in
winter months associated with temperature inversions that
often occur in mountainous areas during the winter. The
relationship between precipitation and elevation was
mostly positive. The benefit of downscaling for refining
gridded climate data in mountainous regions is illustrated
in Fig. 3. When considered for the whole AP region, the
effect of downscaling applied in ClimateAP was relatively
small in terms of the amount of total variance explained for
temperatures (less than 1%) and precipitation (0%–12%)
due to the large amount of total variation in the region.
However, the improvement was substantial on prediction

errors (Fig. 4). The downscaling reduced prediction errors
by 16%–27% for monthly maximum temperatures and up
to 60% for monthly precipitation. The improvement on
monthly minimum temperatures was relatively small (1%–
6%).
The amount of variance in observed climate variables

explained by ClimateAP predictions were high, between
97.3% and 99.3% for monthly minimum temperatures,
between 97.7% and 99.6% for monthly maximum
temperatures, and between 81.6% and 93.9% for monthly
precipitation (Table 2). The prediction errors were between
1.0 and 1.4°C for monthly minimum, between 0.7 and
1.0°C for maximum temperatures, and between 22 and
30 mm for monthly precipitation.

3.2 Accuracies of derived climate variables

The fits of the piecewise and nonlinear functions were
strong for all derived climate variables. Comparisons
between the derived climate variables that were estimated
from monthly climate variables and those that were
calculated from observed daily climate data indicated
that the derived climate variables were highly accurate
based on the amount of variance explained (mostly over
99%) and the prediction errors listed in Table 3.

Fig. 2 Proportions of variance explained by local linear regressions in total variation among the nine neighboring pixels for the three
primary monthly climate variables separated by the equator. The extent of the box indicates the 25th and 75th percentiles. The horizontal
solid lines inside the boxes indicate the medians.
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3.3 Improvements of historical and future climate data

ClimateAP output showed substantial improvements for
historical and future climate data relative to the original
CRU and GCM data for the baseline period (1961–1990
normal) (Fig. 5). On average, the prediction errors for CRU
data were reduced by 0.5°C (31%) for monthly minimum
temperatures, 0.8°C (47%) for monthly maximum tem-
peratures, 21 mm (44%) for monthly precipitation. The
relative improvement for GCM output was even greater as
prediction errors were reduced by 2°C (67%) for monthly
temperatures and 35 mm (56%) for monthly precipitation
on average.

4 Discussion

High-quality and high-resolution climate data are essential

for facilitating climate impact studies and applications.
ClimateAP allows users to extract and downscale gridded
climate data to scale-free climate data for specific point
locations through a dynamic local downscaling approach.
It also generates a diverse series of biologically relevant
derived climate variables at monthly, seasonal and annual
time steps. Evaluations of the downscaling process and
comparisons of output against observations suggest that
the dynamic local downscaling approach implemented in
ClimateAP is effective for reducing interpolation error in
baseline data. The level of improvement in prediction
accuracy is comparable to that determined for Clima-
teNA[18]. Historical monthly climate data from CRU and
future monthly climate data from GCMs for individual
years or normal periods can also be effectively downscaled
using the delta method by taking advantage of the scale-
free climate data for the reference period generated by
ClimateAP.

Fig. 3 Illustration of the effectiveness of the local downscaling applied in ClimateAP shown in a mountainous area in Fujian Province
(117.50° E and 26.52° N). (a) Mean annual temperature (MAT) of the baseline data at 4 km� 4 km; (b) downscaled MAT (90 m � 90 m)
by ClimateAP and overlaid on a satellite geographic image for the reference period; (c) downscaled future MAT for the period of 2041–
2070 based on the 15 GCMs’ ensemble for the RCP 4.5.

Fig. 4 Comparisons in prediction errors between baseline data (i.e., directly from PRISM and WorldClim) and ClimateAP output for
monthly maximum temperature (Tmax01–Tmax12), monthly minimum temperature (Tmin01–Tmin12) and monthly precipitation
(Prec01–Prec12).
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4.1 Downscaling and prediction accuracy for the reference
period

The baseline data used in ClimateAP from PRISM[23] and

WorldClim[2] are at relatively high spatial resolution (4 km
� 4 km) in comparison to historical climate data from
CRU[3] (50 km � 50 km) and projected future climate data
from GCMs[20] (up to 250 km � 250 km). Elevation has

Table 2 The amount of variance in observed climate variables explained by ClimateAP predictions and their prediction errors

Variable
Variance

explained/%*
Prediction
error/°C

Variable
Variance

explained/%
Prediction
error/°C

Variable
Variance

explained/%
Prediction
error/mm

Tmin01 99.2 1.4 Tmax01 99.6 1.0 Pre01 88.2 28

Tmin02 99.3 1.3 Tmax02 99.5 1.0 Pre02 85.2 30

Tmin03 99.0 1.2 Tmax03 99.4 0.9 Pre03 88.4 28

Tmin04 98.3 1.0 Tmax04 98.8 0.8 Pre04 84.8 24

Tmin05 97.3 1.1 Tmax05 97.7 0.9 Pre05 89.1 23

Tmin06 97.9 1.0 Tmax06 98.2 0.9 Pre06 92.4 24

Tmin07 98.2 1.1 Tmax07 98.6 0.9 Pre07 93.7 22

Tmin08 98.3 1.0 Tmax08 98.9 0.7 Pre08 93.9 22

Tmin09 97.8 1.0 Tmax09 98.4 0.8 Pre09 91.9 24

Tmin10 98.0 1.1 Tmax10 98.8 0.8 Pre10 86.5 29

Tmin11 99.0 1.1 Tmax11 99.3 0.9 Pre11 85.6 23

Tmin12 98.6 1.3 Tmax12 99.3 1.0 Pre12 81.6 27

Note: * ClimateAP predictions all exceeded the significance level of P< 0.0001.

Table 3 The amount of variance in observed climate variables explained by monthly climate variables and their prediction standard errors

Variable
Variance explained/% Prediction standard error

Monthly Annual Monthly Annual

DD< 0 (°C) 94.4 – 99.9 99.8 0.5 – 8.2 21.7

DD> 5 (°C) 98.7 – 100.0 99.8 3.2 – 27.2 97.9

DD< 18 (°C) 99.3 – 100.0 99.8 5.2 – 13.9 73.4

DD> 18 (°C) 99.2 – 99.8 99.9 5.0 – 10.8 41.5

NFFD (day) 90.5 – 99.8 98.5 0.5 – 1.6 7.1

EMT (°C) 99.3 2.1

EXT (°C) 86.5 1.5

Note: All derived climate variables exceeded the significance level of P< 0.0001.

Fig. 5 Comparisons in prediction errors among three data sources for the reference normal period 1961–1990: IPCC GCM predictions
(GCM), Climate Research Unit (CRU) and ClimateAP (CAP) output. The error bars are standard errors indicating the variation among the
12 months.
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been identified as the dominant factor driving the local
variation in climate within each pixel of the baseline
climate data[1]. Results of this study have confirmed this.
Thus, the effectiveness of the downscaling depends largely
on the accuracy of the estimated lapse rate, which varies
with latitude at a large scale and local site factors at a fine
scale. Although partial derivative functions have been used
successfully for elevation-related temperatures adjustment,
they are not feasible for precipitation[24]. In this study, a
dynamic local linear regression approach developed for
ClimateNA[18] was applied to ClimateAP. Results of the
analyses show that the lapse rates estimated through local
linear regressions were able to capture such variation in
monthly temperature and precipitation variables among the
neighboring pixels, including temperature inversion in
winter months, which is considered difficult to model[7,25].
The accuracy of ClimateAP predictions for temperatures

were high based on the amount of variance explained
(97%–99%) and prediction errors (0.7–1.4°C) (Table 2).
The prediction accuracy was considerably lower for
precipitation than for temperatures in terms of both the
amount of variance explained (82%–94%) and prediction
errors (22–30 mm). The accuracy of ClimateAP predic-
tions was slightly lower than those observed for Clima-
teNA[18], despite the fact that the relative improvement
over the baseline data by elevation adjustment was
comparable or even greater in ClimateAP. This suggests
that the quality of the baseline data in ClimateNA is better,
as would be expected. PRISM data have been updated for
the USA, but not for China. In addition, the number of
weather stations used for developing these baseline data
was much greater in North America than in the Asia Pacific
region.

4.2 Calculated and derived climate variables

The baseline climate data used in ClimateAP have 36
primary monthly climate variables (Tmin01–Tmin12,
Tmax01–Tmax12 and Pre01–Pre12). ClimateAP calcu-
lates and derives many additional biologically relevant
climate variables at monthly, seasonal and annual time
steps (Table 1). These additional climate variables have
been widely used in modeling forest ecosystem and species
climate niches[6,10,26], population response to cli-
mate[8,27,28] and evolutionary genomics[29]. The most
frequently used climate variables include MAT, annual
heat-moisture index, continentality or temperature differ-
ence, cooling and growing DD (< 0 and> 5, respectively),
and precipitation as snow. The ability to generate these
biologically relevant climate variables significantly
expands the utility of ClimateAP.

4.3 Integration and downscaling of historical and future
climate variables

ClimateAP integrates both historical and future climate

data through a delta method. While the delta method is
relatively simple, it appears to perform as well as
sophisticated downscaling methods in producing mean
characteristics[30]. With this method, the baseline portion
of the historical and future climate data are replaced by the
scale-free data generated by ClimateAP. As the accuracy of
the scale-free baseline data are much higher than that in the
historical or future climate data, this replacement not only
increase the spatial resolution, but also considerably
improves the accuracy of the historical (31%–47% for
temperatures and 44% for precipitation) and future climate
data (67% for temperatures and 56% for precipitation).
For the anomaly section of the historical and future

climate data, ClimateAP bilinearly interpolates the gridded
data into point data at runtime. Although this process is not
likely to improve the accuracy of the predictions, it
smoothens steps across the original grid cells. Moreover,
errors associated with the anomalies are typically small as
they are less sensitive to topography and their spatial
variations are relatively easy to model in comparison to
absolute values for historical climate data[19]. The same
applies for projections of future climate data. Through a
combination of the replacement of the baseline section
and the bilinear interpolation to the anomaly section,
ClimateAP is able to generate seamless climate surfaces
(Fig. 3c). This makes it possible to develop adaptive forest
management strategies at the local scale for a changing
climate.

4.4 Applications and limitations

Modeling climate niches for ecosystems and species
requires climate data that are consistent with the actual
locations of the vegetation in question[31,32]. The scale-free
climate data generated by ClimateAP allows it to meet this
requirement. In addition, the availability of a large number
of calculated and derived biologically relevant climate
variables will considerably increase the flexibility of
models to address such objectives. ClimateAP has been
used to model the climate niche for four major forest tree
species in Asia Pacific[33].
Due to the difficulty in accessing climate data in the past,

scientists have been using geographic variables, such as
latitude, longitudes and elevation as substitutes for climate
variables in experimental design and data analysis.
However, results obtained from such studies are limited
to specific locations. In contrast, a relationship between
plant performance and specific climate variables should
theoretically remain consistent at different locations.
ClimateAP significantly improves access to spatially
distributed, climate variables for use in a wide range of
applications including climate based experimental design,
modeling climate niches for ecosystems and species, and
population responses to climate. In particular, the time-
series function in ClimateAP allows users to generate
monthly climate time series for multiple locations and
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multiple years for historical and future years between 1901
and 2100. In the absence of such a tool, it may take several
months to obtain and process the same amount of data.
ClimateAP can be used to generate climate surfaces.
ClimateAP produces output in a comma-separated-values
format that can be imported easily to ArcGIS to generate
maps. The resolution of the map depends on the resolution
of the input file. It is particularly useful to generate high-
resolution climate maps for specific areas to develop
management strategies accounting for locally variable
climate conditions.
ClimateAP predictions can account for more than 97%

of the total variation in temperatures and more than 82% in
precipitation for the 1961–1990 normals. However, the
standard prediction errors in term of absolute values are
still considerably large, that is 0.7–1.4°C for temperatures
and 22–30 mm for monthly precipitation. This can be
much greater when it comes to specific locations and
specific years (instead of the 30-year normal periods). The
prediction errors are expected to be smaller in the regions
with more weather stations than the regions where weather
stations are lacking. The dynamic local elevation adjust-
ment is effective to downscaling the baseline data.
However, it is not able to correct all the errors associated
with the baseline data or the anomalies of the historical and
future climate data. In addition, although ClimateAP can
generate spatial climate surface at very fine resolution or
for specific locations, the microclimate affected by aspect,
slope and vegetation types at micro-scale are not reflected
in the predictions. Therefore, caution is required when
interpreting the climate data at very fine spatial resolution.

5 Conclusions

ClimateAP uses the best available climate data as baseline
climate data and downscales it to a scale-free format with
improved prediction accuracy using a dynamic local
downscaling approach. It incorporates historical and future
climate data into a single package and improves prediction
accuracy using a delta approach by taking advantage of the
high-quality scale-free baseline data generated by the
application. Additions of calculated and derived biologi-
cally relevant climate variables make the application more
useful for a variety of applications in forest modeling. In
addition, ClimateAP allows users to generate climate data
at any spatial resolution, which is particularly important for
development of adaptive forest management strategies at
local scales. However, it should be noted that errors
inherent in the original baseline and anomaly climate data
cannot be totally corrected by the application. The desktop
version (intensive users) and a Google Map based web
version (occasional users) of ClimateAP can be accessed at
UBC server (http://asiapacific.forestry.ubc.ca/research-
approaches/climate-modeling).
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