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Improved forest cover mapping by harmonizing multiple land cover products 
over China
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ABSTRACT
Fine resolution land cover products are becoming increasingly more available for many regions. 
These products, however, may not meet the quality requirements of many applications. This study 
provides an approach for improving land cover mapping by leveraging existing products and clear 
view Landsat composites. Assessments using independent reference datasets revealed that the 
CAF-LC30 2020 product derived using this approach over China was more accurate than four 
existing land cover products. Its overall accuracy with field observations was 2.94% to 10.28% 
higher than those of the four existing land cover products in northeast China and was 2.10% to 
8.18% better across China. It provided a more accurate representation of the land cover types in 
many regions where the existing land cover products had large classification errors. Forest areas 
calculated using the CAF-LC30 2020 for the 31 provinces and autonomous regions and munici-
palities (PARM) in mainland China were better correlated with those reported by the most recent 
National Forest Inventory (NFI) survey than areas calculated using the other four existing land 
cover products. Therefore, the CAF-LC30 2020 product should be a better alternative for under-
standing China’s forests in 2020 than the other four existing land cover products.
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Introduction

As a key descriptor of the Earth’s surface, land cover 
(LC) is highly relevant for global change research and 
a wide range of applications (Townshend 1994). While 
many earth system processes are affected or driven by 
the spatial distribution and/or temporal dynamics of 
land cover, the latter is also shaped by both natural 
processes and human activities (Foley et al. 2005). 
Therefore, land cover products are among the basic 
datasets needed to understand drivers and processes 
of global change (Wulder et al. 2018), and to advance 
research and applications in ecology, environmental 
sciences, resource management, and sustainable 
development (Townshend et al. 2012; Andrew, 
Wulder, and Nelson 2014).

Since the launch of the first Landsat satellite in the 
1970s, remote sensing has become a primary data 
source for land cover research (Townshend 1992; 
Foody 2002). Thanks to advances in remote sensing 
data source, algorithm research, and computing 
power, land cover mapping capabilities have evolved 
from local to national and global scales (Hansen and 

Loveland 2012). Following pioneering efforts to map 
global land cover at 1-degree (DeFries, Hansen, and 
Townshend 1995) and 8 km resolutions (DeFries et al. 
1998), several land cover products were developed at 
1 km or sub-km resolutions using observations 
acquired by the Advanced Very High Resolution 
Radiometer (AVHRR) (Hansen et al. 2000; Loveland 
et al. 2000), Moderate Resolution Imaging 
Spectroradiometer (MODIS) (Friedl et al. 2002, 2010; 
Tateishi et al. 2011), VEGETATION (Bartholome and 
Belward 2005), and Medium Resolution Imaging 
Spectrometer (MERIS) (Arino et al. 2007, 2008; 
Bicheron et al. 2008). While these coarse-resolution 
products are highly valuable to support climate and 
other models at the global scale, they cannot provide 
useful information for many individual land cover 
patches related to human activities (e.g. urban, crop 
fields, ponds, etc.), which are often smaller than the 
resolutions of these land cover products.

Efforts to create global Landsat datasets through 
NASA’s Global Land Survey (GLS) program for public 
use (Tucker, Grant, and Dykstra 2004; Gutman et al. 
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2008, 2013) ushered opportunities to achieve sub- 
hectare spatial resolutions in global land cover map-
ping. Example products developed based on GLS 
datasets included early Landsat-based global land 
cover maps (Chen et al. 2015; Gong et al. 2013), forest 
cover change products (Feng et al. 2016; Kim et al. 
2014; Sexton et al. 2015, 2013), and urban impervious-
ness products (Brown de Colstoun et al. 2017). The 
combination of free data policies adopted by the 
Landsat (Woodcock et al. 2008; Wulder et al. 2012; 
Zhu et al. 2019), Sentinel-1, and Sentinel-2 programs, 
and low cost or no-cost access to powerful cloud 
computing systems like the Google Earth Engine 
(GEE), Amazon Web Services (AWS), Microsoft Azure, 
and Descartes Labs (Yang et al. 2017) greatly 
improved the feasibility to generate land cover pro-
ducts at 10 to 30 m spatial resolutions on global scale. 
During the past decade, Hansen et al. (2013) used GEE 
and Landsat data to map forest extent and forest 
cover change since 2000. Pekel et al. (2016) quantify 
the changes of global surface water from 1984 to 
2015 by the inventories and national descriptions, 
statistical extrapolation, and satellite imagery. Zhang 
et al. (2019, 2021) produced a suite of global 30 m fine 
classification maps (GLC_FCS30) using the globally 
feature spectral library. Liu et al. (2021) developed 
global 30 m annual-to-seasonal land cover maps for 
1985–2020 with about 80% overall accuracy at first- 
level classification. By leveraging the finer spatial reso-
lutions provided by Sentinel-1 and -2 than Landsat, 
Gong et al. (2019) produced a global land cover pro-
duct at the 10 m resolution for the year 2017. Two 
other global 10 m land cover products were also 
released recently, one by the European Space 
Agency (ESA) (Zanaga et al. 2021) that mapped for 
the year 2020 using the Sentinel-1 and Sentinel-2 
data, this product contained 11 land cover types and 
got an overall accuracy of 74.4% globally; the other by 
the Environmental Systems Research Institute (ESRI) 
(Karra et al. 2021) which was derived from Sentinel-2 
images in 2020 by deep learning classification algo-
rithm, this product contained 10 classes and achieved 
85.9% overall accuracy on the validation set.

While the proliferation of global fine resolution 
land cover products is an indicator of good progress 
in land cover research, having multiple products over 
the same area can be a source of confusion for many 
users, because there are often substantial disagree-
ments among those products. For example, Song, 

Huang, and Townshend (2017) analyzed 6 global 
land cover products with spatial resolutions ranging 
from 250 m to 1 km and found that disagreements 
among these products were high regarding the dis-
tribution of forests. Fritz, See, and Rembold (2010) 
showed that different land cover products not only 
differed substantially at the pixel level, they also 
resulted in very different area estimates for arable 
land at national to continental scales. These disagree-
ments are indicators of uncertainties with at least 
some of the existing land cover products. Such uncer-
tainties often resulted in excessive spurious changes 
when multi-temporal land cover products were com-
pared to identify land cover change (Friedl et al. 2010; 
Friedl and Sulla-Menashe 2019). One approach to 
reduce those uncertainties is to produce a new pro-
duct by using better training data, more accurate 
classification algorithms, less noisy inputs, and more 
predictor variables that can improve class separability. 
Alternatively, differences and similarities among exist-
ing land cover products may also be useful for 
improving land cover mapping. For example, Jung 
et al. (2006) created a joint 1 km land cover map by 
integrating multiple global land cover products. Fritz 
et al. (2011) developed an approach for harmonizing 
multiple land cover products, including Global Land 
Cover Map (GLC-2000) (Bartholomé and Belward, 
2005), MODIS Land Cover product (MOD12V1) (Friedl 
et al. 2002), GlobCover (Bicheron et al. 2008), MODIS 
Crop Likelihood (Pittman et al. 2010), and AFRICover 
dataset (https://www.fao.org/3/bd854e/bd854e.pdf), 
to improve cropland mapping at the 1 km resolution 
for Africa. Song et al. (2014) developed a machine 
learning-based data fusion approach for harmonizing 
several land cover datasets to improve forest cover 
mapping at the 5 km spatial resolutions.

The primary goal of this study was to develop an 
approach that can leverage the differences and com-
plementarity among existing land cover products to 
improve forest cover mapping at sub-hectare spatial 
resolutions. In this approach, multiple existing land 
cover products from 2000 to 2020 (i.e. GlobeLand30, 
GLC_FCS30, and ChinaCover, see Table 1 for more 
details) were harmonized and used to define an inter-
section map that included pixels where those pro-
ducts agreed with one another regarding the land 
cover types for those pixels. We demonstrated that 
the class labels of these pixels were highly accurate 
for several classes, and hence used a fraction of them 
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to train machine learning algorithms needed to clas-
sify clear view images created using an improved 
image compositing method. The existing land cover 
products were also used to define the maximum spa-
tial extent of the forest, which was then used to 
reduce confusion between forest and other land 
cover types during post-processing. We used this 
approach to produce a China-wide 30 m forest cover 
map for 2020 (CAF-LC30 2020) and conducted com-
prehensive assessments of this product and four 
other land cover products developed for 2020.

Data

Landsat images

In this study, we used Landsat 8 OLI surface reflec-
tance images available from the GEE platform that 
had cloud coverage <70%. The majority of the images 
were acquired in 2020. However, there were a few 
extremely cloudy regions where no cloud-free obser-
vations were available in 2020, and 2019 or/and 2021 
images were included to create clear view compo-
sites. These regions were small in general, together 
they accounted for less than 5% of the total area of 
China.

Existing land cover products

Three sets of land cover products (i.e. GlobeLand30, 
GLC_FCS30, and ChinaCover) were used as input to the 
mapping algorithm. Each set consisted of land cover 
maps produced for three different years (Table 1). 
These land cover products were developed by different 
groups using different classification systems. (1) The 

GlobeLand30 dataset has 10 broad land cover types 
(Chen et al. 2015), and multiple assessment studies 
showed that overall accuracy of over 80% was achieved 
(Brovelli et al. 2015; Arsanjani, Tayyebi, and Vaz 2016; 
Chen and Chen 2018); (2) Developed based on 
a DataCube data structure and a global spectral library 
SPECLib (spatial-temporal spectral library), the 
GLC_FCS30 product suite had a reported accuracy of 
82.5% (Zhang et al. 2019, 2021). This product suite 
separated some broad classes into more detailed 
classes in certain regions, resulting in a total of 30 
classes; (3) The ChinaCover dataset used 
a classification scheme designed based on the classifi-
cation system developed by United Nations 
Framework Convention on Climate Change (UNFCCC), 
which included 6 first-level classes and 38 second-level 
classes, the reported accuracies were 94% for first-level 
and 86% for second-level on independent random 
sampling evaluation (Wu et al. 2017).

As we started to evaluate the CAF-LC30 2020 pro-
duct derived through this study near the end of our 
project, two new land cover products for 2020 
became available. One was the China Land Cover 
Dataset (CLCD-2020) generated by Wuhan University 
(Yang et al. 2021). The other was the 10 m WorldCover 
land cover map produced by ESA (Zanaga et al. 2021), 
hereinafter referred to as ESA10-2020. We used the 
reference data collected through this study to provide 
an independent assessment of the quality of both 
products in China.

Reference data

Two sets of reference data were used to provide pixel- 
level assessments of the CAF-LC30 2020 map and four 

Table 1. List of 30 m land cover products used as input to the land cover mapping approach.
Product 
name

Year of available data 
layers Input Data

Classification 
system First-level land cover type Organization Source

GlobeLand30 2000 2010 2020 Landsat-TM 
/ETM 
+/OLI 
HJ-1 A/B

10 first-level 
classes

cultivated land, forest, 
grassland, shrubland, 
wetland, water bodies, 
tundra, artificial surfaces, 
bareland, permanent snow 
and ice

National 
Geomatics 
Center of 
China

http://www.globallandcover.com/ 
home_en.html

GLC_FCS30 2000 2015 2020 Landsat-TM 
/ETM 
+/OLI

30 second- 
level 
classes

\ Chinese 
Academy 
of Science

https://data.casearth.cn/en/

ChinaCover 2000 2010 2015 Landsat-TM 
/ETM+ 
HJ-1 A/B

6 first-level 
38 second- 
level 
classes

forest lands, grasslands, 
croplands, wetlands, built-up 
lands, other lands

Chinese 
Academy 
of Science

http://www.geodata.cn/data/ 
index.html?ownername = % 
E5%90%B4%E7%82%B3%E6% 
96%B9
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other existing maps developed for 2020, including 
GlobeLand30-2020, GLC_FCS30-2020, CLCD-2020, 
and ESA10-2020.

The first set included field data collected in 2020 
over 8,895 field survey plot locations distributed 
throughout the three provinces in northeastern 
China, including Heilongjiang, Jilin, and Liaoning. 
This dataset (referred to as the NE-China reference 
dataset hereafter) also covered a portion of eastern 
Inner Mongolia (Figure 1 (right)). The plots in this 
dataset were located within 2 km of accessible roads 
in order to achieve acceptable data collection efficien-
cies. However, several requirements were defined 
upfront to ensure that the selected plots were distrib-
uted across northeastern China as evenly as possible 
and that the collected data were representative. For 
example, no more than one plot should be selected 
from within one land cover object (e.g. a large reser-
voir or a large, homogeneous forest patch), nor 
should two plots having the same land cover type 
be located within 2 km of each other. To ensure that 
all counties were represented, every county should 
have at least 210 plots. To reduce potential ambigu-
ities in determining the land cover type at any given 
location, plots were selected from homogeneous 
areas no smaller than 3,600 m2, preferably larger 
than 10,000 m2. Field data collected at each plot 

location included GPS coordinates, field photos, and 
descriptions of surface conditions and land cover 
type. Seven land cover types were identified in the 
field, including cultivated land, forest land, grassland, 
wetland, water, artificial surface, and bare land.

The second reference dataset included permanent 
plots selected by the Chinese Terrestrial Ecosystem 
Research Network (CTERN), which consisted of ecolo-
gical stations established to represent different eco-
system types, including forest, cropland, grassland, 
shrubland, wetland, water, and urban (Figure 1 
(left)). A CTERN plot has a square shape with an area 
ranging from 0.04 km2 to 0.06 km2. As of this study, 
the CTERN dataset consisted of mostly forest plots. 
Key factors considered in selecting CTERN plots 
included moisture and temperature gradients, forest 
type, and site quality. Further, all forested plots were 
collocated with the grids used by the National Forest 
Inventory (NFI) program to ensure that CTERN stations 
were distributed as evenly as possible. Nationally 
representative CTERN station networks for nonforest 
ecosystems have yet to be established.

The NE-China and CTERN datasets were highly 
complementary for evaluating the forest cover map 
developed through this study. The NE-China dataset 
provided a dense sampling of the entire northeast-
ern China. The sample sizes for most classes were 

Figure 1. Spatial distribution of CTERN plots available from 2017 to 2020 (left) and plots in the NE-China reference dataset (right).
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adequate for deriving agreement metrics with satis-
factory precision for northeastern China (Table 2). 
While the CTERN dataset had very few plots for crop-
land, bareland, and impervious surfaces, it included 
more than 2,000 plots representing most forest eco-
systems in China, and therefore was ideal for evalu-
ating how well those forests were mapped in this 
study.

In addition to the above reference datasets, we also 
obtained provincial-level forest area estimates 
reported by the National Forestry and Grassland 
Administration (NFGA) of China. These estimates 
were derived based on inventory data collected 
through China’s NFI program. Established in the 
1970s, the NFI program produces forest inventory 
data once every five years. The 9th NFI was conducted 

between 2014 and 2018, providing forest area esti-
mates for 31 provinces and autonomous regions and 
municipalities (PARM) in mainland China (Table A2). 
These estimates were used to evaluate forest areas 
calculated from different land cover products, includ-
ing the CAF-LC30 2020 map produced through this 
study and the four existing land cover products avail-
able for 2020. The 9th NFI revealed that in 2014–2018, 
the national forest coverage was 22.96%. In addition 
to both natural and planted forests, forest areas con-
sidered by the NFI program also included arbor for-
ests and bamboo forests with canopy density above 
20%. In certain regions (most of the semi-arid/arid 
areas in northwestern China), some shrub areas with 
canopy density above 30% were also classified as 
forest land.

Table 2. Number of field plots to provide pixel-level assessments of the CAF-LC30 2020 and four existing land cover products 
developed for 2020.

Reference dataset name Cropland Forest Grassland Wetland Water Impervious Bareland Total

NE-China 4,120 2,377 474 349 341 1,158 76 8,895
CTERN 5 2,294 70 102 315 23 4 2,813
Total 4,125 4,671 544 451 656 1,181 80 11,708

Figure 2. The workflow for developing and evaluating the CAF-LC30 2020 product.
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Methods

The approach for producing the CAF-LC30 2020 map 
consisted of four major steps, including i) image pre-
paration, ii) initial land cover classification; iii) post- 
processing and final map generation; and iv) accuracy 
assessment (Figure 2). The final product and four 
existing land cover products available for 2020 were 
evaluated using the reference datasets.

Images preparation

The primary goal of this step was to produce clear 
view image composites for 2020. Due to frequent 
cloud cover in most regions, obtaining cloud-free 
images for any given area is often challenging. Multi- 
temporal compositing is a common approach for 
generating cloud-free imagery products for large 
areas (Roy et al. 2010; Griffiths et al. 2013; White 
et al. 2014; Hermosilla et al. 2015; Zhu et al. 2015; 
Wulder et al. 2016). In this study, we followed the best 
available pixel (BAP) algorithm proposed by White 
et al. (2014) to generate cloud-free imagery. This algo-
rithm uses a suite of scores to represent the quality of 
observations acquired in different date pixels, includ-
ing the day-of-year in the leaf-on season, opacity, and 
the distance to cloud and cloud shadows. The obser-
vation with the highest total score is selected for use 
in the final image composite. However, we noticed 

that some image composites created using this 
approach had abrupt changes in image color within 
regions that should be relatively homogeneous 
(Figure A2). To mitigate this problem, we developed 
a weighted-available-pixels (WAP) method, which 
used the scores calculated by the BAP method to 
combine all available observations to determine the 
pixel values for use in the composited image. 
A detailed description of this method is provided in 
(Meng et al. 2022).

We implemented the WAP approach on the GEE 
platform and used it to produce clear-view compo-
sites with target dates centered around the peak 
growing season for all areas of China. The input 
images included all Landsat 8 OIL surface reflectance 
images acquired over China in 2020 that had cloud 
coverage <70%. Clouds and cloud shadows were 
masked using the Fmask algorithms (Zhu and 
Woodcock 2014a, 2014b). However, a few extremely 
cloudy regions (less than 5% of the total area of 
China) required 2019 and/or 2021 images to clear 
the residual clouds in the composites created using 
2020 data.

Given the vast territory of China, there were sub-
stantial variations in the peak growing season across 
China. To account for such geographic variations, we 
divided the country into seven sub-regions. Figure 3 
shows the approximate boundaries of these regions. 
The growth peak day and the date range of the 

Figure 3. Spatial distribution of the 311 tiles needed to cover mainland China and the 7 sub-regions (I to VII) used in this study to 
account for geographic variations in the date range of growing season and growth peak days (left). Each tile covers an area of 2.1 
degrees × 2.1 degrees with 0.1 degrees overlap with adjacent tiles (right).
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growing season for each sub-region, which were 
required by the WAP method, are specified according 
to Table 3. All images acquired within the date range 
of the growing season were used as input to the WAP 
algorithm.

The output image composites had 6 spectral bands 
(blue, green, red, NIR, SWIR1, and SWIR2 bands) and 
three spectral indices (Normalized Difference 
Vegetation Index (NDVI), Normalized Difference 
Water Index (NDWI), and Normalized Burn Ratio 
(NBR)). These composites were divided into 2.1 
degrees × 2.1 degrees tiles with an overlap of 0.1 
degrees between adjacent tiles in geographic projec-
tion. This resulted in a total of 311 tiles needed to 
provide complete coverage of mainland China 
(Figure 3).

Initial land cover classification

The initial classification was generated using the 
Random Forest (RF) algorithm (Breiman 2001). Many 
studies have demonstrated the robustness of this 
algorithm for mapping land cover at regional, 
national, and global scales (Nguyen et al. 2020; Sales 
et al. 2021; Ebrahimy et al. 2021). This algorithm does 
not appear to be overly sensitive to mislabeled train-
ing data or other low-level random noise (Mellor et al. 
2015; Pelletier et al. 2017) and can produce stable 
results even when the training sample size is reduced 
by 40%, or when up to 20% of the training samples 
had land cover change (Gong et al. 2019).

The training samples required by this algorithm 
were derived based on the land cover products 
described in Table 1. Because those products were 
developed using different classification systems with 
classes defined using different criteria, we used the 
classification scheme of the GlobeLand30 product 
suite in this study. The more detailed land cover 

types of the ChinaCover and GLC_FCS30 products 
were aggregated to create these 10 classes following 
the rules defined in Table A1. Together with the 
GlobeLand30 product suite, this resulted in a total of 
9 land cover maps (see Table A1) that had the same 
10-class classification scheme. It should be noted that 
because forest training samples were selected from 
the intersection areas of the 9 land cover products, 
the canopy cover threshold value for the forest class 
was determined by the product that had the strictest 
threshold, which was 20%. Therefore, the forest class 
in this study includes forest land dominated by trees 
(including arbors and sparse woods) with a canopy 
cover of at least 20%.

The land cover maps were then reprojected and 
cut into tiles to match the 311 tiles of the Landsat 
image composites. For each tile, we produced two 
maps based on the 9 land cover products. One was 
a union map for the forest class. In this map, a pixel 
had a forest class label if at least one of the 9 land 
cover products classified that pixel as forest. This 
union map was used during the post-processing 
stage to define the maximum extent of forest distri-
bution in the final CAF-LC30 2020 product. The other 
was an intersection map, which included pixels where 
all 9 land cover products had the same class label at 
each pixel location. These pixels were then evaluated 
using the two reference datasets, which demon-
strated that the class labels of these pixels were highly 
reliable. Therefore, the samples needed to train the RF 
algorithm were constructed based on the intersec-
tion map.

For each tile, a maximum of 10,000 random 
samples per class were selected from the intersec-
tion map. These samples were used to train local 
RF models for each tile. Previous studies have 
demonstrated that the use of many local classifica-
tion models often results in better map products 
than using a single global classifier for large area 
land cover mapping (Gong et al. 2013; Zhang and 
Roy 2017; Zhang et al. 2020). The training sample 
sizes used in this study were determined heuristi-
cally based on the literature. Foody (2009) found 
that classification accuracy was positively corre-
lated with training sample size, but it saturated 
after the training sample size exceeded a certain 
threshold. Zhu et al. (2016) proposed that the 
optimal training number for a Landsat scene 
(185 km × 185 km) would be ~20,000 pixels per 

Table 3. Growth peak day and date range of the growing season 
used by the WAP method for each of the 7 sub-regions.

Region 
ID Location

Growth 
peak day

Date range of the growing 
season

I Northeast August 1st June 15th-September15th

II North July 15st June 1st-September30th

III Northwest (north 
part)

July 15st June 1st-September15th

IV Northwest (south 
part)

July 15th June 1st-September30th

V Central July 15th May 15th-October15th

VI Southwest July 15st May 1st-November1st

VII South July 1st April 1st-November30th
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class. In this study, we found that a training size of 
10,000 samples per class was sufficient to train 
a RF model for each tile. For tiles that did not 
have enough training data (i.e. <10,000 pixels for 
a class), the training samples were selected from 
the 8 adjacent tiles surrounding the target tile.

For each tile, we built five RF models. Each model 
had 500 decision trees trained using 70% of the sam-
ples randomly selected from the training dataset 
developed for that tile, and was evaluated using the 
remaining 30% samples. The RF model that produced 
the best results was used to produce the initial classi-
fication map for that tile.

Post-processing and final map generation

Because our goal was to produce an improved forest 
cover map, we mainly focused on improving the for-
est class by majority voting strategy using the given 
land cover products during post-classification proces-
sing (Figure 4). Based on extensive visual assessments 
of the initial RF classification maps, we noticed that 
some pixels (5.26%) in regions dominated by nonfor-
est types such as cropland, grassland, or shrubland 
were classified as forest (commission error). On the 
other hand, 11.73% of pixels in mostly forested areas 
were misclassified as nonforest (omission error). The 
union and intersection maps derived previously 
based on the 9 input land cover maps were used to 
reduce these errors.

The maximum extent of the forest could be 
defined using the union map for the forest class. 
Very few pixels (less than 5%) located outside the 
union areas were true forest pixels. Therefore, (1) 
pixels located within the intersection map for the 
forest class were labeled as a forest regardless of the 
outcome of the RF classifications; (2) For pixels 
located outside the intersection region but within 
the union region, their land cover types were deter-
mined based on a majority voting by four land cover 
layers that were closest to 2020 (i.e. GlobeLand30- 
2020, GLC_FCS30-2020, ChinaCover-2015, and the 
initial RF classification map). For pixels that did not 
have a clear majority, the initial RF classification 
results were used; (3) Pixels located outside the 
union region were relabeled based on a majority vot-
ing by the same four land cover layers. If there was no 
majority over a pixel location, the class label from the 
RF classifications was selected. However, if that pixel 
was mapped as forest by the RF algorithm, it would 
then be reclassified according to the GlobeLand30- 
2020, which appeared to be more reliable than the 
other two product suites in general.

Product assessment

The final CAF-LC30 2020 product was evaluated 
using the NE-China and CTERN reference datasets 
to derive pixel level agreement metrics. At the pro-
vincial level, we compared forest areas calculated 

Figure 4. Flowchart of the post-processing rules used to produce the final CAF-LC30 2020 product. Only the four land cover layers that 
were closest to 2020 (i.e. GlobeLand30-2020, GLC_FCS30-2020, ChinaCover-2015, and the RF classification map) were used in the 
majority voting process.

GISCIENCE & REMOTE SENSING 1577



using this product against estimates reported by the 
NFI program. For comparison, these assessments 
were also applied to four existing land cover pro-
ducts developed for 2020, including the 
GlobeLand30-2020 and GLC_FCS30-2020 that were 
used as inputs in this study, and the CLCD-2020 and 
ESA10-2020 that became available toward the end of 
this study. The pixel level assessment was conducted 
at the 30 m resolution. The ESA10-2020 dataset was 
resampled from 10 m to 30 m using a simple majority 
method.

At the pixel level, we calculated a confusion matrix 
for each product using each of the two reference 
datasets. From the confusion matrix, a suite of agree-
ment measures, including the overall accuracy (OA), 
class-specific user’s accuracy (UA), and producer’s 
accuracy (PA), were calculated. Because the plots in 
the reference data used in this study were not 
selected following a probability-based sampling 
method (Stehman 1999, 2000), we did not know the 
inclusion probability of individual plots in the two 
reference datasets, and hence assumed that in each 
dataset, all plots had the same inclusion probability 
when calculating the accuracy measures using stan-
dard accuracy estimation equations (Congalton 1991; 
Olofsson et al. 2014). Therefore, the accuracy values 
reported in this study should serve as indicators of the 
agreement levels between the land cover products 

and available reference data, not the “true accuracies” 
that would be estimated using reference samples 
selected following a probability-based sampling 
method.

At the provincial level, we calculated the percen-
tage of forest cover for each of the 31 PARMs in 
mainland China using the CAF-LC30 2020 and the 
four existing land cover products for 2020. These 
forest cover estimates were then compared with 
those reported by the 9th NFI (Table A2).

Results

Differences and complementarity of existing land 
cover products

Overall, the 9 maps from the three sets of input land 
cover products used in this study provided relatively 
consistent estimates of forest cover over China, which 
ranged from 20.24% to 22.86% (Figure 5). But they 
had more variability regarding the areal proportions 
for cropland (18.01%-25.48%), grassland (22.21%- 
29.88%), bareland (17.49%-30.26%), and shrubland 
(0.91%-7.19%). The total fraction of all other land 
cover types was minimal (5% or less). While the 
ChinaCover product suite was relatively stable 
between 2000 and 2015, the percent cover estimates 
provided by the GlobeLand30 and GLC_FCS30 

Figure 5. China’s land cover proportions calculated using GlobeLand30 (a-c), GLC_FCS30 (d-f), and ChinaCover (g-i) for different years.
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product suites were more variable over time for some 
land cover types. For example, the percentage of 
bareland reported by GlobeLand30 decreased from 
30.26% in 2000 to 21.69% in 2010, while the percen-
tage of grassland increased from 22.21% to 29.82% 
for the same period. The GLC_FCS30 reported 
a decrease in cropland from 25.48% to 20.60% and 
an increase in grassland from 26.64% to 29.88%.

The intersection map derived using the 9 input 
land cover products revealed that these products 
agreed with one another over 39% of the areas in 
mainland China (Figure 6). These areas were mostly 
forest (11.4%), cropland (9.2%), grassland (7.3%), 
and bareland (11.4%). For several classes, most of 
the pixels in the intersection areas were classified 
correctly by the intersection map. In northeast 
China, 99% of the plots in the NE-China reference 
dataset that were located within the intersection 
area for the cropland class were cropland plots. 
That agreement value was 92%, 88%, and 93% for 
the forest, grassland, and impervious classes, 
respectively. Across China, 97% of the CTERN 

plots located within the intersection areas for the 
forest class were true forest plots. Because wet-
lands were more difficult to classify in general, 
pixels in the intersection areas for this class had 
lower agreement values with the two reference 
datasets.

We defined a union area that included all pixels 
that were classified as forest by at least one of the 
9 products and used this union mask to reduce 
confusion between forest and other land cover 
types. In northeast China, 95% of the forest plots 
in the NE-China dataset were located within the 
union mask. Across China, the union areas 
included 98% of the forest plots in the CTERN 
dataset. The fact that only 2%-5% of the forest 
plots in the two reference datasets were located 
outside the union area mask was an indicator of 
the usefulness of this mask for constraining the 
geographic extent of forest during the post- 
classification processing. Omission errors that 
may arise from not mapping forests outside the 
union area should be very low.

Figure 6. The intersection areas among 9 input land cover products of ten types within China.
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Improvements of the CAF-LC30 2020 product over 
existing land cover maps

With the mapping strategy described in the method 
section, we produced a forest cover map for China for 
2020 (Figure 7). Assessments at both pixel and pro-
vincial levels revealed that this product was better 
than four existing products developed for the 
same year over China, including GlobeLand30-2020, 
GLC_FCS30-2020, CLCD-2020, and ESA10-2020.

Pixel level improvements

In northeast China, the CAF-LC30 2020 map had an OA of 
79.85 ± 0.83% at the 95% confidence interval when 
compared with field data collected over 8,895 plot loca-
tions distributed across that region (Table 4). It was sig-
nificantly better than the OA values of the other four land 
cover products at the 95% confidence interval. The OA 
values of those four products were 73.47 ± 0.92% 

(GlobeLand30-2020), 76.91 ± 0.88% (GLC_FCS30-2020), 
69.57 ± 0.96% (CLCD-2020), and 70.58 ± 0.95% (ESA10- 
2020). Further, the CAF-LC30 2020 map had the highest 
or second highest UA and PA for most of the classes 
covered by the reference dataset.

Throughout China, the CAF-LC30 2020 map also 
had a better OA with field observations over the 
2,813 CTERN plots distributed across China 
(Table 5). While all five products had near-perfect 
user’s accuracies (98%-99%) with CTERN data over 
the 2,294 forested plots, the producer’s agreement 
of the CAF-LC30 2020 map for the forest class was 
2%-4% higher than those of the other four existing 
products. Except for the CLCD-2020 product, the 
differences were statistically significant for the 
other three products at the 95% confidence inter-
val. The confusion matrices of the five products 
derived using each of the two reference datasets 
are provided in Tables A3-A12.

Figure 7. An overview of the final CAF-LC30 2020 map. The yellow squares indicate the approximate location of 7 selected sites where 
a detailed comparison of this product with four other products is presented in Figure 8.
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A detailed examination of the map products over 
different forest regions across China revealed that 
each existing product had different issues in different 
regions (Figure 8). The GlobeLand30-2020 product 
misclassified forest as grassland in several sites 
(Figure 8A, 8D, and 8F), with the ESA10-2020 product, 
and to a lesser degree, the CLCD-2020 product, having 
a similar problem. Compared with other products, the 
CLCD-2020 dataset overestimated forest at the 
expense of missing details for some nonforest classes 
(Figure 8A, 8B, 8D, and F)). A major issue with the 

GLC_FCS30-2020 product was its overestimation of 
shrubland (Figure 8E), especially in southern China 
(Figure A1 (d-f)). Derived based on clear view Landsat 
composites and multiple existing land cover products, 
the CAF-LC30 2020 map appeared to be able to pro-
vide more realistic representation of the land cover 
details at each of the 7 sites examined in Figure 8.

Provincial level improvements
Some of the issues with the existing land cover pro-
ducts were more pronounced when they were used to 

Figure 8. Comparison of the CAF-LC30 2020 map (2nd column) and four existing land cover products (3rd to 6th column) with the clear 
view Landsat composites (first column, Landsat 8 bands 6, 5, 4 shown in red, green, and blue) over 7 sites representing boreal forest 
(A), temperate continental forest (B and G), subtropical humid forest (C, D, and F), and tropical forest (E) in China. The approximate 
locations of the 7 sites are shown in Figure 7.

GISCIENCE & REMOTE SENSING 1581



Ta
bl

e 
4.

 P
ix

el
 le

ve
l a

gr
ee

m
en

ts
 b

et
w

ee
n 

20
20

 la
nd

 c
ov

er
 p

ro
du

ct
s 

an
d 

fie
ld

 s
ur

ve
y 

da
ta

 c
ol

le
ct

ed
 in

 n
or

th
ea

st
 C

hi
na

 a
nd

 t
he

ir 
ra

ng
es

 a
t 

th
e 

95
%

 c
on

fid
en

ce
 in

te
rv

al
.

Pr
od

uc
t

Ac
cu

ra
cy

Cr
op

la
nd

Fo
re

st
G

ra
ss

la
nd

W
et

la
nd

W
at

er
Im

pe
rv

io
us

Ba
re

la
nd

CA
F-

LC
30

 2
02

0
PA

 (%
)

94
.5

1 
±

0.
70

67
.2

3 
±

1.
89

82
.2

8 
±

3.
44

28
.0

8 
±

4.
71

56
.8

9 
±

5.
26

78
.7

6 
±

2.
36

22
.3

7 
±

9.
37

U
A 

(%
)

80
.1

4 
±

1.
12

88
.8

3 
±

1.
46

71
.3

0 
±

3.
79

74
.8

1 
±

7.
43

80
.8

3 
±

4.
98

70
.9

7 
±

2.
48

50
.0

0 
±

16
.8

1
O

A 
(%

) =
 7

9.
85

 ±
 0

.8
3

G
lo

be
La

nd
30

-2
02

0
PA

 (%
)

90
.1

0 
±

0.
91

53
.8

9 
±

2.
00

83
.7

6 
±

3.
32

22
.9

2 
±

4.
41

44
.2

8 
±

5.
27

77
.7

2 
±

2.
40

18
.4

2 
±

8.
72

U
A 

(%
)

81
.4

0 
±

1.
13

87
.3

8 
±

1.
70

38
.4

7 
±

2.
97

68
.3

8 
±

8.
43

79
.8

9 
±

5.
71

60
.8

5 
±

2.
49

26
.9

2 
±

12
.0

6
O

A 
(%

) =
 7

3.
47

 ±
 0

.9
2

G
LC

_F
CS

30
-2

02
0

PA
 (%

)
94

.0
0 

±
0.

73
58

.5
2 

±
1.

98
77

.2
2 

±
3.

78
22

.9
2 

±
4.

41
56

.8
9 

±
5.

26
79

.7
9 

±
2.

31
17

.1
1 

±
8.

47
U

A 
(%

)
78

.9
1 

±
1.

14
88

.7
1 

±
1.

57
46

.4
5 

±
3.

48
56

.7
4 

±
8.

18
86

.2
2 

±
4.

50
74

.4
6 

±
2.

43
54

.1
7 

±
19

.9
3

O
A 

(%
) =

 7
6.

91
 ±

 0
.8

8
CL

CD
-2

02
0

PA
 (%

)
89

.1
7 

±
0.

95
54

.8
6 

±
2.

00
49

.7
9 

±
4.

50
18

.0
5 

±
4.

04
30

.7
9 

±
4.

90
68

.8
3 

±
2.

67
11

.8
4 

±
7.

26
U

A 
(%

)
77

.9
4 

±
1.

18
72

.0
8 

±
2.

07
36

.5
3 

±
3.

71
43

.7
5 

±
8.

10
10

0.
00

 
±

0.
00

54
.5

5 
±

2.
55

56
.2

5 
±

24
.3

1
O

A 
(%

) =
 6

9.
57

 ±
 0

.9
6

ES
A1

0-
20

20
PA

 (%
)

86
.4

8 
±

1.
04

58
.7

3 
±

1.
98

69
.8

3 
±

4.
13

19
.7

7 
±

4.
18

48
.9

7 
±

5.
31

63
.8

2 
±

2.
77

17
.1

1 
±

8.
47

U
A 

(%
)

80
.5

9 
±

1.
17

78
.2

5 
±

1.
91

37
.6

6 
±

3.
20

80
.2

3 
±

8.
42

76
.6

1 
±

5.
62

65
.6

3 
±

2.
77

3.
41

 
±

1.
82

O
A 

(%
) =

 7
0.

58
 ±

 0
.9

5

1582 S. MENG ET AL.



Ta
bl

e 
5.

 P
ix

el
 le

ve
l a

gr
ee

m
en

ts
 b

et
w

ee
n 

20
20

 la
nd

 c
ov

er
 p

ro
du

ct
s 

an
d 

fie
ld

 d
at

a 
co

lle
ct

ed
 a

t 
CT

ER
N

 p
lo

ts
 d

is
tr

ib
ut

ed
 a

cr
os

s 
Ch

in
a 

an
d 

th
ei

r 
ra

ng
es

 a
t 

th
e 

95
%

 c
on

fid
en

ce
 in

te
rv

al
.

Pr
od

uc
t

Ac
cu

ra
cy

Cr
op

la
nd

Fo
re

st
G

ra
ss

la
nd

W
et

la
nd

W
at

er
Im

pe
rv

io
us

Ba
re

la
nd

CA
F-

LC
30

 2
02

0
PA

 (%
)

80
.0

0 
±

35
.0

6
87

.1
4 

±
1.

37
91

.4
3 

±
6.

56
35

.2
9 

±
9.

27
47

.6
2 

±
5.

52
95

.6
5 

±
8.

34
75

.0
0 

±
42

.4
4

U
A 

(%
)

2.
09

 
±

2.
03

99
.0

6 
±

0.
42

23
.8

8 
±

5.
10

64
.2

9 
±

12
.5

5
99

.3
4 

±
1.

29
28

.2
1 

±
 9

.9
9

5.
88

 
±

6.
46

O
A 

(%
) =

 8
0.

98
 ±

 0
.8

2
G

lo
be

La
nd

30
-2

02
0

PA
 (%

)
80

.0
0 

±
35

.0
6

82
.8

7 
±

1.
54

88
.5

7 
±

7.
45

35
.2

9 
±

9.
27

41
.2

7 
±

5.
44

10
0.

00
 

±
0.

00
50

.0
0 

±
49

.0
0

U
A 

(%
)

1.
98

 
±

1.
92

99
.0

1 
±

0.
44

16
.4

0 
±

3.
73

59
.0

2 
±

12
.3

4
98

.4
8 

±
2.

09
28

.4
0 

±
9.

82
5.

13
 

±
6.

92
O

A 
(%

) =
 7

6.
72

 ±
 0

.8
8

G
LC

_F
CS

30
-2

02
0

PA
 (%

)
60

.0
0 

±
42

.9
4

84
.1

3 
±

1.
50

88
.5

7 
±

7.
45

34
.3

1 
±

9.
21

30
.4

8 
±

5.
08

10
0.

00
 

±
0.

00
50

.0
0 

±
49

.0
0

U
A 

(%
)

1.
16

 
±

1.
30

98
.9

2 
±

0.
46

20
.3

9 
±

4.
53

47
.3

0 
±

11
.3

8
96

.9
7 

±
3.

38
27

.0
6 

±
9.

44
4.

88
 

±
6.

59
O

A 
(%

) =
 7

6.
47

 ±
 0

.8
8

CL
CD

-2
02

0
PA

 (%
)

60
.0

0 
±

42
.9

4
85

.3
1 

±
1.

45
71

.4
3 

±
10

.5
8

58
.8

2 
±

9.
55

40
.3

2 
±

5.
42

91
.3

0 
±

11
.5

2
25

.0
0 

±
42

.4
4

U
A 

(%
)

1.
28

 
±

1.
44

98
.5

4 
±

0.
53

36
.5

0 
±

8.
06

25
.6

4 
±

5.
59

93
.3

8 
±

4.
18

10
0.

00
 

±
0.

00
1.

54
 

±
2.

99
O

A 
(%

) =
 7

8.
88

 ±
 0

.8
5

ES
A1

0-
20

20
PA

 (%
)

80
.0

0 
±

35
.0

6
82

.8
7 

±
1.

54
85

.7
1 

±
8.

20
7.

84
 

±
5.

22
16

.1
9 

±
4.

07
95

.6
5 

±
8.

34
50

.0
0 

±
49

.0
0

U
A 

(%
)

1.
59

 
±

1.
55

98
.5

5 
±

0.
53

15
.3

1 
±

3.
56

33
.3

3 
±

18
.8

6
94

.4
4 

±
6.

11
16

.3
0 

±
6.

23
7.

14
 

±
9.

54
O

A 
(%

) =
 7

2.
80

 ±
 0

.9
2

GISCIENCE & REMOTE SENSING 1583



calculate forest areas at the provincial level. The per-
centages of forest cover calculated using the CAF-LC30 
2020 for the 31 PARMs in mainland China were better 
correlated (R2 = 0.962, rRMSE = 18.57%) with those 
reported by the 9th NFI survey conducted from 2014 
to 2018 than the percentages calculated using the 

other four existing land cover products (Figure 9). 
While the GlobeLand30-2020 underestimated forest 
over several of the sites examined in Figure 8, those 
local issues did not have much impact on the provincial 
level forest percentage estimates derived using this 
product. The relationships between those estimates 

Figure 9. Comparison of the percentage of forest cover reported by the 9th NFI for each of the 31 PARMs in mainland China with those 
calculated based on (a) CAF-LC30 2020, (b) GlobeLand30-2020, (c) GLC_FCS30-2020, (d) CLCD-2020, and (e) ESA10-2020. Each dot 
represents one PARM, its color denotes the sub-regions of that PARM in China (Figure 10).
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and the 9th NFI survey data were only marginally worse 
than the relationships between estimates derived from 
the CAF-LC30 2020 product and the NFI data. It should 
be noted that while forest area estimates derived using 
all 5 land cover datasets for 2020 were correlated with 
NFI data with high R2 values in general (Figure 9), the 
linear fit between the estimates from each product and 
NFI data was statistically different from the 1:1 line 
(Table A13), meaning differences between those esti-
mates and the NFI data were statistically significant. 
The estimates calculated using the CAF-LC30 product 
had the lowest root mean square error (RMSE) when 
compared to the NFI data (Figure 9), indicating that this 
product could provide more accurate forest cover esti-
mates at the PARM level than the other four products.

A comparison of the forest cover estimates derived 
from different land cover products against NFI data 
for individuals, PARMs revealed that each product had 
issues that exhibited certain regional patterns 
(Figure 10). For example, the ESA10-2020 product 
reported substantially higher forest percentages 
than NFI and other land cover products for several 

PARMs, including Chongqing, Sichuan, Guangdong, 
Guangxi, Hainan, Zhejiang, Hubei, and Hunan, most 
of which had 50% or more forest cover. On the con-
trary, the GLC_FCS30-2020 product mapped some 
forestland as shrubland or grassland in three pro-
vinces in southern China, including Guangdong, 
Guangxi, and Hainan. It is worth noting that the forest 
cover in any of the five land cover products in 2020 
was underestimated when compared with the NFI 
data for several PARMs in northwestern China, includ-
ing Qinghai, Ningxia, and Xinjiang in the northwest, 
Shanghai, Jiangsu, and Shandong in the east, and 
Tianjin in the north. This was likely due to the use of 
a more inclusive forest definition by the NFI program 
in certain situations. For example, the shrubbery or 
woody shrubs (cover ≥ 20% and height ≥3 m) that 
play significant ecological protection roles in arid or 
semiarid areas are considered “special forests” by the 
NFI survey. In arid or semiarid regions like northwes-
tern China where Qinghai, Ningxia, and Xinjiang were 
located, shrubland areas with a canopy cover > 30% 
were classified as forestland because they were 

Figure 10. Comparison of provincial level forest cover estimates reported by the 9th NFI survey (1st column of each sub-graph) with those 
calculated based on five land cover products (2nd to 6th column of each sub-graph) over the seven sub-regions in mainland China.
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important for conservation purposes. Shrub-like crops 
that had important economic values and had 
a canopy cover > 30% were also classified as forests 
by NFI. For PARMs like Shanghai, Jiangsu, Shandong, 
and Tianjin that had extremely low forest cover, clas-
sifying the shrub crops as forestland likely was the 
main reason why NFI reported more forestland than 
mapped by any of the five land cover products.

Discussion

Opportunities in a product-rich era

Free access to global 30 m or finer resolution satellite 
datasets from powerful cloud computing systems that 
are accessible at affordable or no costs greatly 
improved the feasibility to produce land cover pro-
ducts needed to capture the sub-hectare spatial 
details characteristic of many land cover objects, 
especially those related to human activities. Now 
that several global fine resolution (i.e. 10 m to 30 m) 
land cover products have been published (Chen et al. 
2015; Zhang et al. 2019; Gong et al. 2019; Zanaga et al. 
2021; Karra et al. 2021; Potapov et al. 2022; Friedl et al. 
2022), most land areas of the globe are already cov-
ered by multiple products. Many regions have even 
more products available because they were also cov-
ered by country- or region-specific land cover pro-
ducts (Zhang et al. 2017; Manakos et al. 2018). This 
study demonstrated that multiple existing land cover 
products could be harmonized to improve forest 
cover mapping at the 30 m resolution.

Developed by three different research groups, the 
nine input land cover products used in this research 
did not have a high level of agreement. At the classi-
fication level considered in this study, these products 
agreed with one another on the land cover types for 
less than 40% of the pixels (Figure 6). However, the 
class labels of these pixels appeared to be highly 
accurate (> 90% of the time) for several classes, 
including forest, cropland, and impervious surface. 
Therefore, these pixels could provide high-quality 
training data needed to calibrate machine learning 
algorithms in an automated land cover mapping 
workflow. While land cover maps generated by 
machine learning algorithms typically have consider-
able confusions between many land cover types due 
to a lack of adequate separability between those 
types (Schneider, Friedl, and Potere 2010; Loosvelt 

et al. 2012), the complementarity of the input land 
cover products could be leveraged to reduce some of 
those confusions. On the one hand, since pixels in the 
intersection areas where the input products agreed 
with one another were already classified accurately by 
the existing land cover products, errors in classifica-
tion maps produced by a machine learning algorithm 
over these areas could be resolved based on the input 
land cover products. On the other hand, the union 
areas for a class that included all pixels where at least 
one of the input products classified those pixels as 
that class defined the maximum extent for that class 
reasonably well. According to the reference datasets 
used in this study, the majority of the forest pixels 
(95% to 98%) in China were located within the union 
areas defined by the 9 input land cover products for 
the forest class. Therefore, this union area mask could 
be used to correct the misclassification of nonforest 
pixels as forest outside the mask area. Potential omis-
sion errors for the forest class that may arise from this 
correction should be low (likely < 5% in this study).

Advantages of the mapping approach and future 
improvements

The forest cover mapping approach developed in this 
study was designed to leverage both the intersection 
and union areas of the 9 input land cover products. 
The fact that the resultant CAF-LC30 2020 map was 
substantially more accurate than four existing land 
cover products for the year 2020 demonstrated the 
effectiveness of this mapping approach. Our 
approach greatly reduced the classification errors 
that the input land cover products had in different 
regions. For example, the GLC_FCS30 product suite 
mapped more shrubs and fewer forests in south and 
southwest China than the other two input product 
suites. In northeast China, the ChinaCover product 
suite had substantially more wetlands. Large dis-
agreements also existed among the three product 
suites in arid and semiarid northwest China (Figure 
A1). In addition to the agreement metrics reported in 
the results, comprehensive visual assessments of the 
CAF-LC30 2020 map revealed that it provided a more 
accurate representation of the land cover types in 
these regions and many other regions where the 
existing land cover products had obvious errors.

Because our approach does not require region 
specific land cover knowledge provided by local 

1586 S. MENG ET AL.



experts, it can be automated and used to improve 
land cover mapping for any region of the globe, 
especially for countries that have one or more region 
specific land cover products in addition to the avail-
able global land cover products. To what degree 
improvements can be achieved using this approach 
will be determined in part by the difference and 
complementarity levels of the input land cover pro-
ducts. In general, products developed by different 
producers likely will result in more improvements 
than products developed by the same producers, 
because the former tend to be more independent of 
one another and therefore can better complement 
one another toward improving land cover mapping. 
Caution should be taken when the input land cover 
products had high levels of similarities or were devel-
oped by the same producers. The intersection and 
union areas calculated using such products may not 
as valuable as discussed earlier for improving land 
cover mapping.

Our approach consisted of a WAP image composit-
ing method, which was an improvement over the BAP 
method developed by White et al. (2014). The WAP 
method produced clear view composites that looked 
smooth and natural in areas where composites gen-
erated by the BAP method were blotchy (Figure A2). 
While at each location we only produced one clear 
view composite for a peak growing season date in this 
study, the WAP method can be used to produce com-
posites for other seasons. Further improvements to 
forest cover mapping might be achievable by using 
composites created for more than one season, as the 
seasonal information provided by such composites 
may improve the separability between forest and 
other vegetation types (Homer et al. 2004; Huang, 
Homer, and Yang 2003). Further, other ancillary data-
sets can also be used to improve land cover mapping. 
For example, the OpenStreet dataset is often used to 
improve the mapping of urban impervious areas (Fan, 
Wu, and Wang 2019; Grippa et al. 2018; Zhong et al. 
2020). Since 2018, the GEDI and ICESat-2 missions 
have collected dense samples of LiDAR measure-
ments across the globe (Dubayah et al. 2020; Markus 
et al. 2017). Because LiDAR can provide highly accu-
rate measurement of vegetation height structure 
(Lefsky et al. 1999; Drake et al. 2002; Bater et al. 
2011; Lee et al. 2011; Potapov et al. 2021), these 
samples can provide high quality training data for 
improving forest cover mapping.

Conclusion

An approach was developed for integrating existing LC 
products with clear view Landsat composites to improve 
forest cover mapping at sub-hectare spatial resolutions. 
Assessments using two independent reference datasets 
revealed that the CAF-LC30 2020 product derived using 
this approach over China was more accurate than four 
existing land cover products, including two that were 
not used as input to the mapping algorithm. Its OA with 
field observations was 2.94% to 10.28% higher than 
those of the four existing land cover products in north-
east China and was 2.10% to 8.18% better across China. 
Comprehensive visual assessments of the CAF-LC30 
2020 map revealed that it provided a more accurate 
representation of the land cover types in regions 
where the existing land cover products had large classi-
fication errors. Estimates of forest cover calculated using 
the CAF-LC30 2020 for the 31 provinces and autono-
mous regions and municipalities (PARM) in mainland 
China were better correlated with data reported by the 
most recent NFI survey than those calculated using the 
other four existing land cover products. Therefore, the 
CAF-LC30 2020 product should be a better alternative 
for understanding China’s forests in 2020 than the other 
four existing land cover products.

With rapid progress being made in the deriva-
tion of fine resolution land cover products at 
national to global scales, soon there likely will be 
no shortage of land cover products for many 
regions. However, this does not mean that the 
available products will have sufficient quality to 
meet the requirements of specific applications. 
This study demonstrated that improved products 
could be derived by leveraging those existing pro-
ducts. Our approach provides a framework for inte-
grating existing land cover products, newly 
available remote sensing observations, and/or 
other ancillary data sources toward improving 
land cover mapping over large regions.
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Appendix

Table A1. Land cover types used in this study and their relationships to those used by the other land cover products.
Target 

Code
Target 
category

GlobeLand30 
code

GlobalLand30 
category

ChinaCover 
code

ChinaCover 
category

GLC_FCS30 
code

GLC_FCS30 
category

1 Cropland 10 Cropland 301 Paddy field 10 Rainfed cropland
302 Dry farmland 11 Herbaceous cover cropland

20 Irrigated cropland
2 Forest 20 Forest 101 Evergreen broadleaf forest 50 Evergreen broadleaf forest

102 Deciduous broadleaf forest 60 Deciduous broadleaf forest
103 Evergreen needleleaf forest 61 Open deciduous broadleaf forest 

(0.15< fc<0.4)
104 Deciduous needleleaf forest 62 Closed Deciduous broadleaf forest 

(fc>0.4)
105 Broadleaf and needleleaf 

mixed forest
70 Evergreen needleleaf forest

109 Sparse forest 71 Open evergreen needleleaf forest 
(0.15< fc <0.4)

111 Tree orchard 72 Closed evergreen needleleaf forest (fc 
>0.4)

113 Tree garden 80 Deciduous needleleaf forest
81 Open deciduous needleleaf forest 

(0.15< fc <0.4)
82 Closed deciduous needleleaf forest (fc 

>0.4)
90 Mixed-leaf forest
12 Tree cover (orchard)

3 Grassland 30 Grassland 201 Temperate steppe 120 Grassland
202 Alpine steppe 121 Sparse vegetation associated 

with grassland (fc<0.15)
203 Temperate meadow 122 Sparse herbaceous cover (fc<0.15)
204 Alpine meadow
205 Tussock
206 Sparse grassland
207 Lawn

4 Shrubland 40 Shrubland 106 Evergreen broadleaf 
shrubland

130 Shrubland

107 Deciduous broadleaf 
shrubland

140 Evergreen shrubland

108 Evergreen needleleaf 
shrubland

150 Deciduous shrubland

110 Sparse shrubland 152 Sparse Sparse vegetation associated 
With shrubland (fc<0.15)

112 Shrub orchard
114 Shrub garden

5 Wetland 50 Wetland 401 Tree wetland 153 Wetlands
402 Shrub wetland
403 Herbaceous wetland

6 Water 60 Water 404 Lake 180 Water
405 Reservoir/Pond
406 River
407 Canal/Channel

7 Tundra 70 Tundra 601 Moss/Lichen 190 Lichens and mosses
8 Impervious 80 Impervious 501 Settlement 200 Impervious surface

502 Transportation land
503 Mining field

9 Bareland 90 Bareland 602 Bare rock 201 Bare areas
603 Gobi 202 Consolidated bare areas
604 Bare soil 210 Unconsolidated bare areas
605 Desert
606 Salina

10 Snow/Ice 100 Snow/Ice 607 Permanent ice/snow 220 Permanent ice and snow
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Figure A1. Overview maps of the nine input LC products after unifying their classification systems according to Table A1 to create the 
target LC types used in this study.

Table A2. The percentage of forest coverage reported by the 9th NFI for the 31 provinces, autonomous regions and municipalities 
(PARM) listed in alphabetical order).

ID Province Forest cover ID Province Forest cover ID Province Forest cover

1 Anhui 28.65 12 Henan 24.14 23 Shandong 17.51
2 Beijing 43.77 13 Hubei 39.61 24 Shanghai 14.04
3 Chongqing 43.11 14 Hunan 49.69 25 Shanxi 20.5
4 Fujian 66.8 15 Inner Mongolia 22.1 26 Sichuan 38.03
5 Gansu 11.33 16 Jiangsu 15.2 27 Tianjin 12.07
6 Guangdong 53.52 17 Jiangxi 61.16 28 Xinjiang 4.87
7 Guangxi 60.17 18 Jilin 41.49 29 Xizang 12.14
8 Guizhou 43.77 19 Liaoning 39.24 30 Yunnan 55.04
9 Hainan 57.36 20 Ningxia 12.63 31 Zhejiang 59.43
10 Hebei 26.78 21 Qinghai 5.82
11 Heilongjiang 43.78 22 Shaanxi 43.06
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Table A3. Pixel level agreements between the CAF-LC30 2020 product and field plot data in northeast China and their ranges at the 
95% confidence interval.

Cropland Forest Grassland Wetland Water Impervious Bareland Total UA (%)

Cropland 3894 540 40 104 51 205 25 4859 80.14 ± 1.12
Forest 74 1598 10 54 31 25 7 1799 88.83 ± 1.46
Grassland 61 17 390 54 0 10 15 547 71.30 ± 3.79
Wetland 4 6 1 98 18 3 1 131 74.81 ± 7.43
Water 3 15 1 13 194 3 11 240 80.83 ± 4.98
Impervious 75 201 26 24 47 912 0 1285 70.97 ± 2.48
Bareland 9 0 6 2 0 0 17 34 50.00 ± 16.81
Total 4120 2377 474 349 341 1158 76 8895
PA (%) 94.51 ± 0.70 67.23 ± 1.89 82.28 ± 3.44 28.08 ± 4.71 56.89 ± 5.26 78.76 ± 2.36 22.37 ± 9.37

OA (%) = 79.85 ± 0.83

Table A4. Pixel level agreements between the GlobeLand30-2020 product and field plot data in northeast China and their ranges at 
the 95% confidence interval.

Cropland Forest Grassland Wetland Water Impervious Bareland Total UA (%)

Cropland 3712 431 13 112 67 201 24 4560 81.40 ± 1.13
Forest 80 1281 8 50 22 20 5 1466 87.38 ± 1.70
Grassland 55 418 397 59 51 35 17 1032 38.47 ± 2.97
Wetland 13 8 7 80 9 0 0 117 68.38 ± 8.43
Water 2 14 4 18 151 0 0 189 79.89 ± 5.71
Impervious 252 223 32 20 36 900 16 1479 60.85 ± 2.49
Bareland 6 2 13 10 5 2 14 52 26.92 ± 12.06
Total 4120 2377 474 349 341 1158 76 8895
PA (%) 90.10 ± 0.91 53.89 ± 2.00 83.76 ± 3.32 22.92 ± 4.41 44.28 ± 5.27 77.72 ± 2.40 18.42 ± 8.72

OA (%) = 73.47 ± 0.92

Table A5. Pixel level agreements between the GLC_FCS30-2020 product and field plot data in northeast China and their ranges at the 
95% confidence interval.

Cropland Forest Grassland Wetland Water Impervious Bareland Total UA (%)

Cropland 3873 586 71 117 43 193 25 4908 78.91 ± 1.14
Forest 71 1391 10 61 15 16 4 1568 88.71 ± 1.57
Grassland 118 212 366 43 13 19 17 788 46.45 ± 3.48
Wetland 8 12 3 80 30 3 5 141 56.74 ± 8.18
Water 5 6 0 16 194 3 1 225 86.22 ± 4.50
Impervious 42 170 21 27 46 924 11 1241 74.46 ± 2.43
Bareland 3 0 3 5 0 0 13 24 54.17 ± 19.93
Total 4120 2377 474 349 341 1158 76 8895
PA (%) 94.00 ± 0.73 58.52 ± 1.98 77.22 ± 3.78 22.92 ± 4.41 56.89 ± 5.26 79.79 ± 2.31 17.11 ± 8.47

OA (%) = 76.91 ± 0.88

Table A6. Pixel level agreements between the CLCD-2020 product and field plot data in northeast China and their ranges at the 95% 
confidence interval.

Cropland Forest Grassland Wetland Water Impervious Bareland Total UA (%)

Cropland 3674 575 59 117 56 205 28 4714 77.94 ± 1.18
Forest 143 1304 133 83 29 109 8 1809 72.08 ± 2.07
Grassland 77 241 236 33 8 42 9 646 36.53 ± 3.71
Wetland 8 8 0 63 62 3 0 144 43.75 ± 8.10
Water 0 0 0 0 105 0 0 105 100.00 ± 0.00
Impervious 218 249 46 48 81 797 22 1461 54.55 ± 2.55
Bareland 0 0 0 5 0 2 9 16 56.25 ± 24.31
Total 4120 2377 474 349 341 1158 76 8895
PA (%) 89.17 ± 0.95 54.86 ± 2.00 49.79 ± 4.50 18.05 ± 4.04 30.79 ± 4.90 68.83 ± 2.67 11.84 ± 7.26

OA (%) = 69.57 ± 0.96
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Table A7. Pixel level agreements between the ESA10-2020 product and field plot data in northeast China and their ranges at the 95% 
confidence interval.

Cropland Forest Grassland Wetland Water Impervious Bareland Total UA (%)

Cropland 3563 396 72 86 39 245 20 4421 80.59 ± 1.17
Forest 223 1396 20 43 22 71 9 1784 78.25 ± 1.91
Grassland 90 303 331 95 25 12 23 879 37.66 ± 3.20
Wetland 4 4 1 69 6 1 1 86 80.23 ± 8.42
Water 8 14 1 17 167 10 1 218 76.61 ± 5.62
Impervious 108 191 23 20 36 739 9 1126 65.63 ± 2.77
Bareland 124 73 26 19 46 80 13 381 3.41 ± 1.82
Total 4120 2377 474 349 341 1158 76 8895
PA (%) 86.48 ± 1.04 58.73 ± 1.98 69.83 ± 4.13 19.77 ± 4.18 48.97 ± 5.31 63.82 ± 2.77 17.11 ± 8.47

OA (%) = 70.58 ± 0.95

Table A8. Pixel level agreements between the CAF-LC30 2020 product and field data collected over CTERN plots distributed across 
China and their ranges at the 95% confidence interval.

Cropland Forest Grassland Wetland Water Impervious Bareland Total UA (%)

Cropland 4 108 6 20 52 0 1 191 2.09 ± 2.03
Forest 0 1999 0 10 9 0 0 2018 99.06 ± 0.42
Grassland 1 123 64 32 47 1 0 268 23.88 ± 5.10
Wetland 0 19 0 36 1 0 0 56 64.29 ± 12.55
Water 0 1 0 0 150 0 0 151 99.34 ± 1.29
Impervious 0 10 0 0 46 22 0 78 28.21 ± 9.99
Bareland 0 34 0 4 10 0 3 51 5.88 ± 6.46
Total 5 2294 70 102 315 23 4 2813
PA (%) 80.00 ± 35.06 87.14 ± 1.37 91.43 ± 6.56 35.29 ± 9.27 47.62 ± 5.52 95.65 ± 8.34 75.00 ± 42.44

OA (%) = 80.98 ± 0.82

Table A9. Pixel level agreements between the GlobeLand30-2020 product and field data collected over CTERN plots distributed across 
China and their ranges at the 95% confidence interval.

Cropland Forest Grassland Wetland Water Impervious Bareland Total UA (%)

Cropland 4 142 7 7 41 0 1 202 1.98 ± 1.92
Forest 0 1901 1 6 12 0 0 1920 99.01 ± 0.44
Grassland 1 199 62 47 68 0 1 378 16.40 ± 3.73
Wetland 0 14 0 36 11 0 0 61 59.02 ± 12.34
Water 0 2 0 0 130 0 0 132 98.48 ± 2.09
Impervious 0 11 0 0 47 23 0 81 28.40 ± 9.82
Bareland 0 25 0 6 6 0 2 39 5.13 ± 6.92
Total 5 2294 70 102 315 23 4 2813
PA (%) 80.00 ± 35.06 82.87 ± 1.54 88.57 ± 7.45 35.29 ± 9.27 41.27 ± 5.44 100.00 ± 0.00 50.00 ± 49.00

OA (%) = 76.72 ± 0.88

Figure A2. A clear view composite created using (a) the best available pixel (BAP) method and (b) the weighted BAP method used in 
this study. This area is covered by Landsat Worldwide Reference System (WRS-2) path 125 and row 44.
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Table A10. Pixel level agreements between the GLC_FCS30-2020 product and field data collected over CTERN plots distributed across 
China and their ranges at the 95% confidence interval.

Cropland Forest Grassland Wetland Water Impervious Bareland Total UA (%)

Cropland 3 144 6 16 90 0 0 259 1.16 ± 1.30
Forest 0 1930 0 10 9 0 2 1951 98.92 ± 0.46
Grassland 1 153 62 38 50 0 0 304 20.39 ± 4.53
Wetland 0 32 0 35 7 0 0 74 47.30 ± 11.38
Water 0 3 0 0 96 0 0 99 96.97 ± 3.38
Impervious 0 8 0 0 54 23 0 85 27.06 ± 9.44
Bareland 1 24 2 3 9 0 2 41 4.88 ± 6.59
Total 5 2294 70 102 315 23 4 2813
PA (%) 60.00 ± 42.94 84.13 ± 1.50 88.57 ± 7.45 34.31 ± 9.21 30.48 ± 5.08 100.00 ± 0.00 50.00 ± 49.00

OA (%) = 76.47 ± 0.88

Table A11. Pixel level agreements between the CLCD-2020 product and field data collected over CTERN plots distributed across China 
and their ranges at the 95% confidence interval.

Cropland Forest Grassland Wetland Water Impervious Bareland Total UA (%)

Cropland 3 126 6 12 84 2 1 234 1.28 ± 1.44
Forest 0 1957 3 11 15 0 0 1986 98.54 ± 0.53
Grassland 0 62 50 15 9 0 1 137 36.50 ± 8.06
Wetland 2 106 11 60 54 0 1 234 25.64 ± 5.59
Water 0 8 0 1 127 0 0 136 93.38 ± 4.18
Impervious 0 0 0 0 0 21 0 21 100.00 ± 0.00
Bareland 0 35 0 3 26 0 1 65 1.54 ± 2.99
Total 5 2294 70 102 315 23 4 2813
PA (%) 60.00 ± 42.94 85.31 ± 1.45 71.43 ± 10.58 58.82 ± 9.55 40.32 ± 5.42 91.30 ± 11.52 25.00 ± 42.44

OA (%) = 78.88 ± 0.85

Table A12. Pixel level agreements between the ESA10-2020 product and field data collected over CTERN plots distributed across China 
and their ranges at the 95% confidence interval.

Cropland Forest Grassland Wetland Water Impervious Bareland Total UA (%)

Cropland 4 156 5 18 66 1 1 251 1.59 ± 1.55
Forest 0 1901 1 14 13 0 0 1929 98.55 ± 0.53
Grassland 1 194 60 62 75 0 0 392 15.31 ± 3.56
Wetland 0 1 4 8 10 0 1 24 33.33 ± 18.86
Water 0 3 0 0 51 0 0 54 94.44 ± 6.11
Impervious 0 19 0 0 94 22 0 135 16.30 ± 6.23
Bareland 0 20 0 0 6 0 2 28 7.14 ± 9.54
Total 5 2294 70 102 315 23 4 2813
PA (%) 80.00 ± 35.06 82.87 ± 1.54 85.71 ± 8.20 7.84 ± 5.22 16.19 ± 4.07 95.65 ± 8.34 50.00 ± 49.00

OA (%) = 72.80 ± 0.92

Table A13. Statistical significant of the fitting performance for 2020 land cover products with the 9th NFI data.
Product Variable Estimate Standard Error t Value p Value

CAF-LC30 2020 Intercept (b0) −9.271 1.750 −5.507 6.21e-06***
Slope (b1) 1.189 0.045 26.686 <2e-16***

GlobeLand30-2020 Intercept (b0) −8.823 2.010 −4.390 1.37e-04***
Slope (b1) 1.175 0.052 22.81 <2e-16***

GLC_FCS30-2020 Intercept (b0) −7.142 3.968 −1.800 0.0823*
Slope (b1) 1.104 0.102 10.85 1.01e-11***

CLCD-2020 Intercept (b0) −11.772 2.065 −5.700 3.63e-06***
Slope (b1) 1.382 0.053 26.100 <2e-16***

ESA10-2020 Intercept (b0) −12.605 3.218 −3.917 5.01e-04***
Slope (b1) 1.517 0.083 18.392 <2e-16***

Significant level: ***p < 0.001, **p < 0.01, *p < 0.05
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